Hybrid plasmonic waveguide race-track µ-ring resonator: Analysis of dielectric and hybrid mode for refractive index sensing applications

Laser Physics ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 016202 ◽  
Author(s):  
M A Butt ◽  
N L Kazanskiy ◽  
S N Khonina
2020 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Muhammad Ali ALI Butt ◽  
Nikolay Kazanskiy

We studied the metal-insulator-metal square ring resonator design incorporated with nano-dots that serve to squeeze the surface plasmon wave in the cavity of the ring. The E-field enhances at the boundaries of the nano-dots providing a strong interaction of light with the surrounding medium. As a result, the sensitivity of the resonator is highly enhanced compared to the standard ring resonator design. The best sensitivity of 907 nm/RIU is obtained by placing seven nano-dots of radius 4 nm in all four sides of the ring with a period (ᴧ)= 3r. The proposed design will find applications in biomedical science as highly refractive index sensors. Full Text: PDF References:Z. Han, S. I. Bozhevolnyi. "Radiation guiding with surface plasmon polaritons", Rep. Prog. Phys. 76, 016402 (2013). [CrossRef]N.L. Kazanskiy, S.N. Khonina, M.A. Butt. "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E 117, 113798 (2020). [CrossRef]D.K. Gramotnev, S.I. Bozhevolnyi. "Plasmonics beyond the diffraction limit", Nat. Photonics 4, 83 (2010). [CrossRef]A.N.Taheri, H. Kaatuzian. "Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal–insulator–metal stub filters", Applied Optics 53, 28 (2014). [CrossRef]P. Neutens, L. Lagae, G. Borghs, P. V. Dorpe. "Plasmon filters and resonators in metal-insulator-metal waveguides", Optics Express 20, 4 (2012). [CrossRef]M.A. Butt, S.N. Khonina, N. L. Kazanskiy. "Metal-insulator-metal nano square ring resonator for gas sensing applications", Waves in Random and complex media [CrossRef]M.A.Butt, S.N.Khonina, N.L.Kazanskiy. "Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing", Journal of Modern Optics 65, 1135 (2018). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy, "Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator", Waves in Random and complex media [CrossRef]Y. Fang, M. Sun. "Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits", Light:Science & Applications 4, e294 (2015). [CrossRef]H. Lu, G.X. Wang, X.M. Liu. "Manipulation of light in MIM plasmonic waveguide systems", Chin Sci Bull [CrossRef]J.N. Anker et al. "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 (2008). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy. Journal of Modern Optics 66, 1038 (2019).[CrossRef]Z.-D. Zhang, H.-Y. Wang, Z.-Y. Zhang. "Fano Resonance in a Gear-Shaped Nanocavity of the Metal–Insulator–Metal Waveguide", Plasmonics 8,797 (2013) [CrossRef]Y. Yu, J. Si, Y. Ning, M. Sun, X. Deng. Opt. Lett. 42, 187 (2017) [CrossRef]B.H.Zhang, L-L. Wang, H-J. Li et al. "Two kinds of double Fano resonances induced by an asymmetric MIM waveguide structure", J. Opt. 18,065001 (2016) [CrossRef]X. Zhao, Z. Zhang, S. Yan. "Tunable Fano Resonance in Asymmetric MIM Waveguide Structure", Sensors 17, 1494 (2017) [CrossRef]J. Zhou et al. "Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity", AIP Advances 7, 015020 (2017) [CrossRef]V. Perumal, U. Hashim. "Advances in biosensors: Principle, architecture and applications", J. Appl. Biomed. 12, 1 (2014)[CrossRef]H.Gai, J. Wang , Q. Tian, "Modified Debye model parameters of metals applicable for broadband calculations", Appl. Opt. 46 (12), 2229 (2007) [CrossRef]


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Zhendong Yan ◽  
Chaojun Tang ◽  
Guohua Wu ◽  
Yumei Tang ◽  
Ping Gu ◽  
...  

Achieving perfect electromagnetic wave absorption with a sub-nanometer bandwidth is challenging, which, however, is desired for high-performance refractive-index sensing. In this work, we theoretically study metasurfaces for sensing applications based on an ultra-narrow band perfect absorption in the infrared region, whose full width at half maximum (FWHM) is only 1.74 nm. The studied metasurfaces are composed of a periodic array of cross-shaped holes in a silver substrate. The ultra-narrow band perfect absorption is related to a hybrid mode, whose physical mechanism is revealed by using a coupling model of two oscillators. The hybrid mode results from the strong coupling between the magnetic resonances in individual cross-shaped holes and the surface plasmon polaritons on the top surface of the silver substrate. Two conventional parameters, sensitivity (S) and figure of merit (FOM), are used to estimate the sensing performance, which are 1317 nm/RIU and 756, respectively. Such high-performance parameters suggest great potential for the application of label-free biosensing.


2020 ◽  
Author(s):  
Nikolay Lvovich Kazanskiy ◽  
Svetlana Nikolaevna Khonina ◽  
Muhammad Ali Butt

Abstract We propose a polarization-insensitive design of a hybrid plasmonic waveguide (HPWG) optimized at the 3.392 µm wavelength which corresponds to the absorption line of methane gas. The waveguide design is capable of providing high mode sensitivity (Smode) and evanescent field ratio (EFR) for both transverse electric (TE) and transverse magnetic (TM) hybrid modes. The modal analysis of the waveguide is performed via 2-dimension (2D) and 3-dimension (3D) finite element methods (FEMs). At optimized waveguide parameters, Smode and EFR of 0.94 and 0.704, can be obtained for the TE hybrid mode, respectively, whereas the TM hybrid mode can offer Smode and EFR of 0.86 and 0.67, respectively. The TE and TM hybrid modes power dissipation of ~3 dB can be obtained for a 20-µm-long hybrid plasmonic waveguide at the 60% gas concentration. We believe that the highly sensitive waveguide scheme proposed in this work overcomes the limitation of the polarization controlled light and can be utilized in gas sensing applications.


Plasmonics ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. 1379-1385 ◽  
Author(s):  
Kristof Lodewijks ◽  
Jef Ryken ◽  
Willem Van Roy ◽  
Gustaaf Borghs ◽  
Liesbet Lagae ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7452
Author(s):  
Muhammad A. Butt ◽  
Andrzej Kaźmierczak ◽  
Cuma Tyszkiewicz ◽  
Paweł Karasiński ◽  
Ryszard Piramidowicz

In this paper, a novel and cost-effective photonic platform based on silica–titania material is discussed. The silica–titania thin films were grown utilizing the sol–gel dip-coating method and characterized with the help of the prism-insertion technique. Afterwards, the mode sensitivity analysis of the silica–titania ridge waveguide is investigated via the finite element method. Silica–titania waveguide systems are highly attractive due to their ease of development, low fabrication cost, low propagation losses and operation in both visible and near-infrared wavelength ranges. Finally, a ring resonator (RR) sensor device was modelled for refractive index sensing applications, offering a sensitivity of 230 nm/RIU, a figure of merit (FOM) of 418.2 RIU−1, and Q-factor of 2247.5 at the improved geometric parameters. We believe that the abovementioned integrated photonics platform is highly suitable for high-performance and economically reasonable optical sensing devices.


Sign in / Sign up

Export Citation Format

Share Document