An enhanced close-in phase noise LC-VCO using parasitic V-NPN transistors in a CMOS process

2009 ◽  
Vol 30 (8) ◽  
pp. 085004 ◽  
Author(s):  
Gao Peijun ◽  
Oh N J ◽  
Min Hao
Keyword(s):  
2018 ◽  
Vol 27 (10) ◽  
pp. 1850158 ◽  
Author(s):  
Rekha Yadav ◽  
Pawan Kumar Dahiya ◽  
Rajesh Mishra

In this paper, a novel method to realize LC Voltage-Controlled-Oscillator (LC-VCO) operating at 76.2–76.7[Formula: see text]GHz frequency band for microwave RFIC component is presented. The model of cross-coupled differential LC-VCO is designed in 45[Formula: see text]nm technology using Complementary Metal Oxide Semiconductor (CMOS) process for Frequency Modulated Carrier Wave (FMCW) automotive radar sensors and RF transceivers application. The impact of VDD, control voltage and temperature variation on frequency shift, phase noise, and output power has been analyzed to optimize the trade-off between frequency, phase noise, and power requirement. The results depict that LC-VCO dissipates 10.45[Formula: see text]mW power at an operating voltage of 1.5[Formula: see text]V. The phase noise has been observed to be [Formula: see text]90[Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset at 76[Formula: see text]GHz carrier frequency. The estimated layout area of IC is [Formula: see text]m2. The result shows the edge of the design over existing techniques.


2007 ◽  
Vol 17 (8) ◽  
pp. 610-612 ◽  
Author(s):  
Huijung Kim ◽  
Woonyun Kim ◽  
Seonghan Ryu ◽  
Sanghoon Kang ◽  
Byeong-Ha Park ◽  
...  

Circuit World ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 32-41
Author(s):  
Deepak Balodi ◽  
Arunima Verma ◽  
Ananta Govindacharyulu Paravastu

Purpose The paper aims to present the novel design approach for a low power LC-voltage-controlled oscillators (VCO) design with low phase noise that too targeted at the most sought band of Bluetooth applications. Owing to their crucial role in a wide variety of modern applications, VCO and phase-locked loop (PLL) frequency synthesizers have been the subject of extensive research in recent years. In fact, VCO is one of the key components being used in a modern PLL to provide local frequency signal since a few decades. The complicated synthesizer requirements imposed by cellular phone applications have been a key driver for PLL research. Design/methodology/approach This paper first opted to present the recent developments on implemented techniques of LC-VCO designs in popular RF bands. An LC-VCO with a differential (cross-coupled) MOS structure is then presented which has aimed to compensate the losses of an on-chip inductor implemented in UMC’s 130 nm RF-CMOS process. The LC-VCO is finally targeted to embed onto the synthesizer chip, to address the narrowband (S-Band) applications where Bluetooth has been the most sought one. The stacked inductor topology has been adopted to get the benefit of its on-chip compatibility and low noise. The active differential architecture, which basically is a cross-coupled NMOS structure, has been then envisaged for the gain which counters the losses completely. Three major areas of LC-VCO design are considered and worked upon for the optimum design parameters, which includes Bluetooth coverage range of 2.410 GHz to 2.490 GHz, better linearity and high sensitivity and finally the most sought phase noise performance for an LC-VCO. Findings The work provides the complete design aspect of a novel LC-VCO design for low phase noise narrowband applications such as Bluetooth. Using tuned MOS varactor, in 130 nm-RF CMOS process, a high gain sensitivity of 194 MHz/Volt was obtained. Thus, the entire frequency range of 2415-2500 MHz for Bluetooth applications, supporting multiple standards from 3G to 5G, was covered by voltage tuning of 0.7-1.0 V. To achieve the low power dissipation, low bias (1.2 V) cross-coupled differential structure was adopted, which completely paid for the losses occurred in the LC resonator. The power dissipation comes out to be 8.56 mW which is a remarkably small value for such a high gain and low noise VCO. For the VCO frequencies in the presented LO-plan, the tank inductor was allowed to have a moderate value of inductance (8 nH), while maintaining a very high Q factor. The LC-VCO of the proposed LO-generator achieved extremely low phase noise of −140 dBc/Hz @ 1 MHz, as compared to the contemporary designs. Research limitations/implications Though a professional tool for inductor and circuit design (ADS-by Keysight Technologies) has been chosen, actual inductor and circuit implementation on silicon may still lead to various parasitic evolutions; therefore, one must have that margin pre-considered while finalizing the design and testing it. Practical implications The proposed LC-VCO architecture presented in this work shows low phase noise and wide tuning range with high gain sensitivity in S-Band, low power dissipation and narrowband nature of wireless applications. Originality/value The on-chip stacked inductor has uniquely been designed with the provided dimensions and other parameters. Though active design is in a conventional manner, its sizing and bias current selection are unique. The pool of results obtained completely preserves the originally to the full extent.


2013 ◽  
Vol 662 ◽  
pp. 902-906
Author(s):  
Ji Hai Duan ◽  
Huang Sheng ◽  
Chen Zheng ◽  
Wei Lin Xu

A LC voltage-control oscillator(LC-VCO) with two stage LC cross coupling structure is designed for serial communication applications. The design constraints and tradeoffs among power dissipation and startup condition, tank amplitude, tuning range are executed using graphical optimization method. This design strategy leads to a good phase noise performance which is demonstrated through design example. This LC-VCO is implemented using 0.18-m RF CMOS process. The post-simulation results show that the circuit has an output frequency from 3.23G to 3GHz, and phase noise is -125.2dBc/1MHz. The VCO only occupies a chip area of 600m*800m, and it consumes 16 mW. A Comparison to prior arts further supports this design example and its optimization technique. The most important thing of this work is that a method of separating variables to analyze design problems is suggested.


Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 805
Author(s):  
Shi Zuo ◽  
Jianzhong Zhao ◽  
Yumei Zhou

This article presents a low power digital controlled oscillator (DCO) with an ultra low power duty cycle correction (DCC) scheme. The DCO with the complementary cross-coupled topology uses the controllable tail resistor to improve the tail current efficiency. A robust duty cycle correction (DCC) scheme is introduced to replace self-biased inverters to save power further. The proposed DCO is implemented in a Semiconductor Manufacturing International Corporation (SMIC) 40 nm CMOS process. The measured phase noise at room temperature is −115 dBc/Hz at 1 MHz offset with a dissipation of 210 μμW at an oscillating frequency of 2.12 GHz, and the resulin figure-of-merit is s −189 dBc/Hz.


2009 ◽  
Vol 30 (9) ◽  
pp. 095002 ◽  
Author(s):  
Xu Conghui ◽  
Xi Jingtian ◽  
Lu Lei ◽  
Yang Yuqing ◽  
Tan Xi ◽  
...  

2012 ◽  
Vol 496 ◽  
pp. 527-533
Author(s):  
Na Bai ◽  
Hong Gang Zhou ◽  
Qiu Lei Wu ◽  
Chun Yu Peng

In this paper, ring oscillator phase noise caused by power supply noise (PSN) with deterministic frequency is analyzed. Results show that phase noise caused by deterministic noise is only an impulse series. Compared with the jitter caused by PSN, the phase noise caused by PSN with deterministic frequency contributes considerably less to total phase noise performance. To verify the analysis method, a CMOS ring oscillator is designed and fabricated using SMIC 0.13 µm CMOS process. Comparisons between the analytical results and measurements prove the accuracy of the proposed method


2021 ◽  
pp. 2140002
Author(s):  
Yanbo Chen ◽  
Shubin Zhang

Phase Locked Loop (PLL) circuit plays an important part in electronic communication system in providing high-frequency clock, recovering the clock from data signal and so on. The performance of PLL affects the whole system. As the frequency of PLL increases, designing a PLL circuit with lower jitter and phase noise becomes a big challenge. To suppress the phase noise, the optimization of Voltage Controlled Oscillator (VCO) is very important. As the power supply voltage degrades, the VCO becomes more sensitive to supply noise. In this work, a three-stage feedforward ring VCO (FRVCO) is designed and analyzed to increase the output frequency. A novel supply-noise sensing (SNS) circuit is proposed to suppress the supply noise’s influence on output frequency. Based on these, a 1.2 V 2 GHz PLL circuit is implemented in 110 nm CMOS process. The phase noise of this CMOS charge pump (CP) PLL is 117 dBc/Hz@1 MHz from test results which proves it works successfully in suppressing phase noise.


2021 ◽  
Author(s):  
Kai Sun ◽  
Junliang Wang ◽  
Xuan Wang ◽  
Jiong Gu ◽  
Lianming Li ◽  
...  
Keyword(s):  
High Q ◽  

Sign in / Sign up

Export Citation Format

Share Document