scholarly journals Performance Optimization Of Micro-Power Wireless Transmission Based On Hardware Test

2021 ◽  
Vol 1738 ◽  
pp. 012017
Author(s):  
Jie Hui Gui ◽  
LI Zheng ◽  
Xu Dong Zhang ◽  
YongLi Chen ◽  
LI Fei
2014 ◽  
Vol 494-495 ◽  
pp. 1640-1646
Author(s):  
Yu Lan ◽  
Xin Lu ◽  
Ye Shen He ◽  
Yun Feng Li

In the micro-power wireless transmission of the electric system, positions among modes are relatively fixed, power business data is reported at specific time points, and time distribution presents great differences. Key technologies of IEEE802.15.4 MAC layer protocol is expounded, shortages of collision detection and CSMA/CA on power business support, etc. are discussed, self-adaptive low-power consumption CSMA/CA algorithm which is more suitable for business of the electric system are designed and improved, and the algorithm goes through simulation experiment against the business characteristics of micro-power wireless network of the electric system. The simulation result demonstrates the algorithm may be greatly adapted to changes of network traffic under a relatively fixed environment of network topology on the premise of low power consumption.


Author(s):  
Edwin H. Solano-Araque ◽  
Jaime A. Parra-Raad ◽  
Sebastian Roa-Prada

The optimal performance of a micro-power piezoelectric generator for power harvesting from ambient vibrations strongly depends on the appropriate coupling among its components such as the piezoelectric element, the electrical circuit interface and the load. This coupling is governed by the different types of physical interaction phenomena occurring between such subsystems. A piezoelectric micro-power generator typically consists of a layer of active material deposited on a substrate that convert the mechanical energy from ambient vibrations into electrical energy, an interfacing circuit that usually rectifies this electrical energy and the electrical load where the harvested energy can be stored for later use or spent directly in an application. So far the research efforts in the literature have focused on the performance optimization of each of these subsystems independently, in many cases in an analytical form. Unfortunately, this approach implies a simplification of the models, ruling out most of the complex effects embedded in the dynamic behavior of the system, which does not guarantee optimal performance for the whole device once all its parts are put together. Performance is reduced in the whole device due to different effects such as dynamic loading and impedance mismatch, among others. In order to study the interaction between the subsystems of a micro-power generator, this research proposes a methodology that, by implementing the model for all components on a common a platform, allows for simultaneous analysis and design. A case study is presented and the results demonstrate the potential of the technique for cross-layer optimization of micro-power generators in connection with their associated electronics circuitry.


2019 ◽  
Vol 9 (01) ◽  
pp. 47-54
Author(s):  
Rabbai San Arif ◽  
Yuli Fitrisia ◽  
Agus Urip Ari Wibowo

Voice over Internet Protocol (VoIP) is a telecommunications technology that is able to pass the communication service in Internet Protocol networks so as to allow communicating between users in an IP network. However VoIP technology still has weakness in the Quality of Service (QoS). VOPI weaknesses is affected by the selection of the physical servers used. In this research, VoIP is configured on Linux operating system with Asterisk as VoIP application server and integrated on a Raspberry Pi by using wired and wireless network as the transmission medium. Because of depletion of IPv4 capacity that can be used on the network, it needs to be applied to VoIP system using the IPv6 network protocol with supports devices. The test results by using a wired transmission medium that has obtained are the average delay is 117.851 ms, jitter is 5.796 ms, packet loss is 0.38%, throughput is 962.861 kbps, 8.33% of CPU usage and 59.33% of memory usage. The analysis shows that the wired transmission media is better than the wireless transmission media and wireless-wired.


Sign in / Sign up

Export Citation Format

Share Document