scholarly journals Study of the parameters of molybdenum oxide films by optical methods

2021 ◽  
Vol 2059 (1) ◽  
pp. 012016
Author(s):  
D S Nikolyukin ◽  
V I Shapovalov

Abstract In this work, the physical properties of molybdenum oxide films obtained by reactive magnetron sputtering were studied. Based on the experimental transmission and reflection spectra for samples at different currents in the fundamental absorption region, the optical band gap was determined, and in the visible range, the thickness of the films was defined. The studied films had the values of optical parameters that were observed by other authors. However, the dependence of the optical band gap width on the thickness of the films is not found in the literature and can be associated with the influence of the flux density of the substance sputtered from the target surface on the structure of the film.

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1316
Author(s):  
Shujahadeen B. Aziz ◽  
Muaffaq M. Nofal ◽  
Hewa O. Ghareeb ◽  
Elham M. A. Dannoun ◽  
Sarkawt A. Hussen ◽  
...  

The influence of dispersing Al-metal complex on the optical properties of PVA was investigated using UV–visible spectroscopy. Polymer composite films with various Al3+-complex amounts in the PVA matrix were arranged by solution casting technique by means of distilled water as a widespread solvent. The formation of Al3+-metal complex was verified through Ultraviolet–visible (UV-Vis) and Fourier-transform infrared spectroscopy (FTIR) examinations. The addition of Al-complex into the polymer matrix led to the recovery of the optical parameters such as dielectric constant (εr and εi) and refractive index (n). The variations of real and imaginary parts of complex dielectric constant as a function of photon wavelength were studied to calculate localized charge density values (N/m*), high-frequency dielectric constant, relaxation time, optical mobility, optical resistivity, and plasma angular frequency (ωp) of electrons. In proportion with Al3+-complex content, the N/m* values were amplified from 3.68 × 1055 kg−1 m−3 to 109 × 1055 kg−1 m−3. The study of optical parameters may find applications within optical instrument manufacturing. The optical band gap was determined from Tauc’s equation, and the type of electronic transition was specified. A remarkable drop in the optical band gap was observed. The dispersion of static refractive index (no) of the prepared composites was analyzed using the theoretical Wemple–DiDomenico single oscillator model. The average oscillator energy (Eo) and oscillator dispersion energy (Ed) parameters were estimated.


2013 ◽  
Vol 37 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Chitra Das ◽  
Jahanara Begum ◽  
Tahmina Begum ◽  
Shamima Choudhury

Effect of thickness on the optical and electrical properties of gallium arsenide (GaAs) thin films were studied. The films of different thicknesses were prepared by vacuum evaporation method (~10-4 Pa) on glass substrates at a substrate temperature of 323 K. The film thickness was measured in situ by a frequency shift of quartz crystal. The thicknesses were 250, 300 and 500 nm. Absorption spectrum of this thin film had been recorded using UV-VIS-NIR spectrophotometer in the photon wavelength range of 300 - 2500 nm. The values of some important optical parameters of the studied films (absorption coefficient, optical band gap energy and refractive index; extinction co-efficient and real and imaginary parts of dielectric constant) were determined using these spectra. Transmittance peak was observed in the visible region of the solar spectrum. Here transmittance showed better result when thicknesses were being increased. The optical band gap energy was decreased by the increase of thickness. The refractive index increased by increasing thickness while extinction co-efficient and real and imaginary part of dielectric constant decreased. DOI: http://dx.doi.org/10.3329/jbas.v37i1.15684 Journal of Bangladesh Academy of Sciences, Vol. 37, No. 1, 83-91, 2013


2021 ◽  
pp. 002199832110370
Author(s):  
Ömer Bahadır Mergen

In recent years, as a result of increasing environmental concerns, biodegradable materials have gained great attention. With the rapid development of electronic technology, the importance of innovation and development of low-cost, sustainable, transient bioelectronics materials is increasing. In this research, the preparation of Poly(Vinyl Alcohol) (PVA), Chitosan (CS), and Multi-Walled Carbon nanotube (MWCNT) biocomposite films have been described. The solution mixing, ultrasonic mixing, and spin coating techniques were used to prepare the PVA/CS/MWCNT biocomposite thin films. UV–Vis absorption spectroscopy and two-point probe resistivity measurement techniques were used to study the optical and electrical properties of the biocomposite thin films. Optical band gap energies ( Eg) of PVA/CS/MWCNT biocomposites were obtained using the Tauc and Absorbance Spectrum Fitting (ASF) methods. Results obtained with both methods were found to be exactly the same. Experimental results have shown that with increasing MWCNT concentration, electrical conductivity (σ) increases from 1.75x10−16 S to 2.94x10−3 S, and Eg decreases significantly. At the same time, the fundamental optical parameters such as band tail (Urbach) energy ( Eu), refractive index ( n), absorption ( α), and extinction ( k) coefficient of the PVA/CS/MWCNT biocomposites were investigated in the UV-VIS range. The improvement observed in the optical and electrical properties of PVA/CS/MWCNT biocomposite films shows that these composites could be used as bioelectronics materials.


2012 ◽  
Vol 710 ◽  
pp. 739-744 ◽  
Author(s):  
Anup Kumar ◽  
Pawan Heera ◽  
P. B Baraman ◽  
Raman Sharma

The optical constants, like absorption coefficient (α), optical band gap (Eg) and refractive index (n), in Se80.5Bi1.5Te18-yAgy (y= 0, 1.0 and1.5) thin films are calculated using well known Swanepoel’s method in the spectral range of 600-2000 nm. The optical band gap has been estimated by using Tauc’s extrapolation method and is found to increase with increase in Ag content. The present results shows that the large value of nonlinear refractive index and good transparency of these thin films will make them a very promising materials for optical integrated circuits in the optical communication systems.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2320 ◽  
Author(s):  
Ahang M. Hussein ◽  
Elham M. A. Dannoun ◽  
Shujahadeen B. Aziz ◽  
Mohamad A. Brza ◽  
Rebar T. Abdulwahid ◽  
...  

In the current study, the film fabrication of polystyrene (PS) based polymer nanocomposites (NCs) with tuned refractive index and absorption edge was carried out using the solution cast method. X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) light characterization techniques were performed. The structural and optical properties of the prepared films were specified. The hump of PS decreased significantly when SnTiO3 nanoparticles (NPs) were introduced. Sharp and high intense peaks of SnTiO3 NPs at a high filler ratio were observed. The crystalline size was determined for SnTiO3 NPs from the sharp crystalline peaks using Debye-Scherrer’s equation and was found to be 25.179 nm, which is close enough to that described by the supplier. Several optical parameters, such as absorption coefficient (α), refractive index (n), and optical dielectric properties, were investigated. The absorption spectra were tuned with increasing SnTiO3NPs. Upon the addition of the NPs to the PS host polymer, the absorption edge undergoes shifting to lesser photon energy sides. The optical dielectric constant (ε′) was correlated to the refractive index. The study of the optical band gap was conducted in detail using both Tauc’s model and the optical dielectric loss (ε″) parameter. The results showed that the ε″ parameter is noteworthy to be measured in the optical band gap study of materials.


2011 ◽  
Vol 35 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Fatema Rezwana Chowdhury ◽  
Shamima Choudhury ◽  
Firoz Hasan ◽  
Tahmina Begum

Thin films of Tin Oxide (SnO2), having thickness of 200 nm, were formed on to glass substrates by thermal evaporation of high-purity SnO2 powder in vacuum at various substrate temperatures (TS), ranging between 25 and 200°C. SnO2 films with varying thickness were also prepared for a fixed TS = 100°C. Further, doping of SnO2 films with Indium (In) was accomplished through solid state diffusion process by successive deposition of SnO2 and In films and subsequent annealing at 200°C for 10 minutes. Both undoped and doped films were characterized optically by UV-VIS-NIR spectrophotometry in the photon wavelength ranging from 300 to 2500 nm. In the visible photon wavelength range, the average optical transmittance (T%) of the films with varying TS was found to be 85%. The maximum value of T % was found to be 89 % around the wavelength of 700nm. The variation of absorption coefficient with photon energy in the fundamental absorption region is the steepest for TS = 100°C. The sub-band gap (SBG) absorption is also minimum for this Ts. A fluctuating behavior of the band gap energy (Eg) with Ts is observed attaining the highest value of 3.59 eV for Ts = 100°C. The band gap energy increases with thickness but T% in the visible range decreases. The T% in the visible range varies inversely with indium doping, being highest for undoped films. The Eg increases upto 2 wt% In doping and gradually decreases for enhanced doping. It seems reasonable to conclude that In doping does not bring favorable optical characteristics. Undoped SnO2 films having thickness of 200 nm and formed at substrate temperature of 100°C yield essential acceptable properties for photovoltaic applications.DOI: http://dx.doi.org/10.3329/jbas.v35i1.7975Journal of Bangladesh Academy of Sciences, Vol.35, No.1, 99-111, 2011


2016 ◽  
Vol 12 (27) ◽  
pp. 263 ◽  
Author(s):  
Md. Mahafuzur Rahaman ◽  
Kazi Md. Amjad Hussain ◽  
Mehnaz Sharmin ◽  
Chitra Das ◽  
Shamima Choudhury

Indium doped Tin oxide (SnO2: In) thin films of various thicknesses (200-600 nm) with fixed 2% indium (In) concentration were prepared by thermal evaporation method onto glass substrates under high vacuum (10-6 Torr). As deposited films were vacuum annealed at 200o C for 60 minutes. The structure, optical, electrical and morphology properties of SnO2: In thin films were investigated as a function of film thickness. The XRD analysis revealed that films were polycrystalline in nature with a tetragonal structure having (110) plane as the preferred orientation. The average crystalline size increased from 34.8 to 51.25 nm with increase of film thicknesses. The surface morphology of the doped films was obtained by Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM). Optical transmittance was obtained from a double beam UV-Vis- NIR spectrophotometer. Maximum transmittance varied from 65-76% in the visible range of the spectrum. Optical band gap (Eg) varied between 2.89 and 3.20 eV. The resistivity of SnO2: In thin films was as high as 105 Ω-cm. Activation energy of the films were found to be 0.18 to 0.47 eV for 300-600 nm film thicknesses. Due to high optical band gap and high electrical resistivity, these nanostructured films can be used in optoelectronic devices especially as opto-insulator.


2019 ◽  
Vol 20 (16) ◽  
pp. 3910 ◽  
Author(s):  
M. A. Brza ◽  
Shujahadeen B. Aziz ◽  
H. Anuar ◽  
Muataz Hazza F. Al Hazza

The present work proposed a novel approach for transferring high-risk heavy metals tometal complexes via green chemistry remediation. The method of remediation of heavy metals developed in the present work is a great challenge for global environmental sciences and engineering because it is a totally environmentally friendly procedure in which black tea extract solution is used. The FTIR study indicates that black tea contains enough functional groups (OH and NH), polyphenols and conjugated double bonds. The synthesis of copper complex was confirmed by the UV-vis, XRD and FTIR spectroscopic studies. The XRD and FTIR analysis reveals the formation of complexation between Cu metal complexes and Poly (Vinyl Alcohol) (PVA) host matrix. The study of optical parameters indicates that PVA-based hybrids exhibit a small optical band gap, which is close to inorganic-based materials. It was noted that the absorption edge shifted to lower photon energy. When Cu metal complexes were added to PVA polymer, the refractive index was significantly tuned. The band gap shifts from 6.2 eV to 1.4 eV for PVA incorporated with 45 mL of Cu metal complexes. The nature of the electronic transition in hybrid materials was examined based on the Taucs model, while a close inspection of the optical dielectric loss was also performed in order to estimate the optical band gap. The obtained band gaps of the present work reveal that polymer hybrids with sufficient film-forming capability could be useful to overcome the drawbacks associated with conjugated polymers. Based on the XRD results and band gap values, the structure-property relationships were discussed in detail.


1997 ◽  
Vol 221 (2-3) ◽  
pp. 245-254 ◽  
Author(s):  
Seungbum Hong ◽  
Eunah Kim ◽  
Dae-Weon Kim ◽  
Tae-Hyun Sung ◽  
Kwangsoo No

2021 ◽  
Author(s):  
Ahmed Saeed Hassanien ◽  
Alaa A Akl ◽  
I. M. El Radaf

Abstract This article has dedicated to studying some structural features and optical characteristics of the Novel polycrystalline ZnGa2S4 (ZGS) thin films utilizing spray pyrolysis process at different thicknesses (293, 375, 452, and 517nm). The microstructural properties and crystal defects of these films have been studied in previous work. While in this work, the crystallinity degree and crystalline volume fraction have been studied using X-ray diffractograms. The stoichiometry of these ZnGa2S4 films has been checked using the energy dispersive x-ray analysis. The field-emission-scanning-electron microscope has been utilized to investigate the morphology of ZGS films' surfaces. Optical properties have been studied via transmittance and reflectance spectra in the range 300nm - 2500nm. Some important optical parameters such as absorption coefficient, skin depth, Urbach's energy, steepness parameters, and electron-phonon interactions have been extensively studied. The direct and indirect gap energy were determined by different four models and compared with Tauc’s model. Optical data analysis revealed that; all studied properties are strongly dependent on the film thickness. The optical band gap values were slightly decreased from 3.7eV to 4.1eV with increment of the film thickness owing to improving the crystallization process. These obtained results confirm that these films are wide band gap semiconductors, which makes them recommended for use in many solar cell applications as a window layer.


Sign in / Sign up

Export Citation Format

Share Document