scholarly journals Influence of hybrid pin profile on microstructural and mechanical properties of Al/SiC graded composites produced by friction stir processing

2021 ◽  
Vol 2070 (1) ◽  
pp. 012187
Author(s):  
Venkatesh Bikkina ◽  
Sadasiva Rao Talasila ◽  
Kumar Adepu

Abstract Friction stir processing (FSP) was employed to fabricate a surface graded composite by embedding SiC reinforcement particles in an AA6082-T6 matrix. Conical blind holes were drilled on the surface of the plate with varying inter-hole distances. The processing was performed with the different number of passes by keeping rotational and traverse speed constant. A new hybrid tool with a combination of conventional conical threaded tool and the triangular cross-sectioned tool was used in processing. The microstructural features of the processed samples were examined by a 3D microscope and scanning electron microscope (SEM). Mechanical properties such as microhardness, tensile strength was thoroughly evaluated. It is reported that the number of passes played an essential role in the distribution of reinforcement particles and grain refinement. The hardness value improved by applying multiple passes. The fractured tensile samples showed ductile failure. The sample treated with double passes gave better results with the homogenous distribution of reinforcement particles compared to samples processed with a single pass.

2014 ◽  
Vol 592-594 ◽  
pp. 234-239 ◽  
Author(s):  
A. Thangarasu ◽  
N. Murugan ◽  
I. Dinaharan ◽  
S.J. Vijay

Friction stir processing (FSP) is as a novel modifying technique to synthesize surface composites. An attempt has been made to synthesis AA6082/TiC surface composite using FSP and to analyze the effect of tool rotational speed on microstructure and microhardness of the same. The tool rotational speed was varied from 800 rpm to 1600 rpm in steps of 400 rpm. The traverse speed, axial force, groove width and tool pin profile were kept constant. Scanning electron microscopy was employed to study the microstructure of the fabricated surface composites. The results indicated that the tool rotational speed significantly influenced the area of the surface composite and distribution of TiC particles. Higher rotational speed provided homogenous distribution of TiC particles while lower rotational speed caused poor distribution of TiC particles in the surface composite. The effect of the tool rotational speed on microhardness is also reported in this paper.


2021 ◽  
Author(s):  
Saeed Ahmadifard ◽  
Nasir Shahin ◽  
Mojtaba Vakili-azghandi ◽  
Shahab Kazemi

Abstract This study investigates the effects of incorporating Ti3AlC2 MAX phase into Al7075-T6 alloy by friction stir processing as well as adding Al2O3 nanoparticles to obtain a surface hybrid nanocomposite. These composites were successfully prepared by friction stir processing with a rotational speed of 1000 rpm and a travel speed of 28 mm/min after 3 passes. Optical, atomic force and scanning electron microscopy as well as microhardness, tensile and wear tests utilized to characterize the fabricated surface hybrid nanocomposites. Results showed that the maximum tensile strength and hardness value were achieved for Al-100% Al2O3 composite due to more grain refinement and effective dispersion of nanoparticles. Due to its laminar structure, Ti3AlC2 MAX phase enhanced better tribological characterization whereas Al2O3 nanoparticles cause better mechanical properties. Scanning electron microscopy tests revealed that the wear mechanism changes from adhesive for Al7075 alloy to adhesive-abrasive for the nanocomposite specimens.


Author(s):  
Khalid A Al-Ghamdi ◽  
G Hussain ◽  
R Hashemi

Friction stir processing is a novel material fabrication technique. This study was undertaken in order to investigate a suitable set of friction stir processing parameters to form AL7075T651/TiN nano composite. A number of samples were produced by varying the process parameters, namely, tool-pin geometry, number of passes and the direction of tool rotation. The pin geometries employed include triangular, square and threaded taper; the passes were varied over two levels (i.e. 2 and 4) and the tool rotation was changed as clockwise and counter clockwise between the successive passes. The effect of these variations on the composite was quantified through several microstructural and mechanical tests. The increase in the number of passes was observed to improve various characteristics of the composite (i.e. distribution of TiN particles, grain refinement and mechanical properties). The effect of tool geometry, however, was associated with the choice of the number of passes. The change in the direction of tool rotation between the consecutive passes was witnessed to improve the distribution of TiN particles. From the X-ray diffraction analysis of the samples, the formation of several new phases was detected. These were found to have effect on the mechanical properties of the composite. A good trade-off among various properties of the composite (i.e. hardness, tensile strength and ductility) was realized when the friction stir processing was performed using square tool and employing four passes with simultaneously changing the direction of tool rotation between the successive passes. This study is the first report on the fabrication of AL7075T651/TiN nano composite through friction stir processing route.


Author(s):  
Chao Shi ◽  
Chao Liu ◽  
Kaizhen Zhu

Abstract AA7075 is a precipitation strengthened Al-Zn-Mg-Cu alloy which has been widely used. As a common way to repair AA7075 components, tungsten inert gas (TIG) cladding generates coarse grains and defects. In addition, the use of other types of filler wires could lead to insufficient rigidity and strength of the cladding layer. In the present work, friction stir processing (FSP) has been applied to the TIG cladding layer on AA7075 to study the effect of process parameters on microstructures and mechanical properties. The macro/micro structural characteristics, elemental distribution, microhardness distribution and tensile properties have been investigated. The macroscopic defects in TIG cladding layer are eliminated and the size of grains is decreases to around 6 μm by FSP. FSP reduces the compositional difference between the stir zone and the base material. Higher rotational speed promotes the grain refinement while the lower traverse speed benefits the microstructural uniformity. FSP on the TIG weld bead brings improvement in tensile properties and hardness. All the fractures for TIG+FSP samples occur at thermo-mechanically affected zone of the advancing side. The tensile strength of the stir zone increases from 424.2 to 442.8 MPa with the increase in rotational speed and traverse speed.


2011 ◽  
Vol 312-315 ◽  
pp. 319-324 ◽  
Author(s):  
Mohsen Barmouz ◽  
M.K. Besharati Givi ◽  
Parviz Asadi

Friction stir processing (FSP) was applied to modify the microstructure of pure copper and Cu/SiC nanocomposite layers. Optical and scanning electron microscopy (SEM) was employed to investigate the microstructure on the modified surface. Also, the wear resistance and friction coefficient behavior of specimens were investigated. FSP homogenizes and refines the copper structure and creates a microstructure with nano-sized SiC particles (30 nm) distributed in the pure copper matrix. Also, it is found that the traversal speed of tool significantly influence the microstructure of developed zone in pure copper. Generally, higher tool traverse speed leads to a more homogeneous microstructure and SiC particles dispersion. This means that higher traverse speeds result in agglomeration of SiC particles which reduces the microhardness values.


Author(s):  
Saeed Ahmadifard ◽  
Shahab Kazemi ◽  
Akbar Heidarpour

In this study, the production and characterization of A5083–Al2O3–TiO2 hybrid surface nanocomposite by friction stir processing have been investigated. The effect of different ratios of nanosized Al2O3 and TiO2 particles on microstructural and mechanical properties was investigated. A threaded cylindrical hardened steel tool was used with the rotation speed of 500 r/min and travel speed of 56 mm/min and a tilt angle of 3°. Microhardness of base metal and treated surfaces as well as tensile strength was evaluated. The samples were characterized by means of optical and scanning electron microscopy. The results showed that the maximum tensile strength and hardness value were achieved for a mixture of Al2O3 and TiO2 in the ratio of 25–75, respectively. The microhardness and tensile strength were respectively increased by 50% and 182% while ductility was reduced by 60%.


2013 ◽  
Vol 829 ◽  
pp. 851-856 ◽  
Author(s):  
Bahram A. Khiyavi ◽  
Abdolhossein Jalali Aghchai ◽  
Mohammadreza Arbabtafti ◽  
Mohamad Kazem Besharati Givi ◽  
Jalal Jafari

The main aims of this study is to produce copper reinforced metal matrix composite (MMC) using micron sized chromium particles via friction stir processing (FSP) in order to studying effects of adding Cr particles to copper based matrix by FSP.Microstructures, microhardness and wear properties have been studied in order to evaluate the microstructures and mechanical properties of fabricated composites. the microstructure properties are evaluated by optical microscopy (OM) and field emission scanning electron microscopy (FESEM). The mechanical behaviors of the samples are determined by microhardness and wear tests. The results showed that the grain size of fabricated composite reduced. also it is indicated that in comparison to base copper microhardness of FSPed composites in stir zone (SZ) have been increased significantly. the results of wear test showed that in comparison with specimen with traverse speed of 80 mm/min , higher traverse speed of 160 mm/min increase wear rate of cylindrical pins.


2015 ◽  
Vol 651-653 ◽  
pp. 765-770 ◽  
Author(s):  
A.H. Jabbari ◽  
Mohammad Sedighi ◽  
Rudolf Vallant ◽  
Andreas Huetter ◽  
Christof Sommitsch

In this paper, Friction Stir Processing (FSP) is used to produce a homogenous AZ31/SiC Metal Matrix Composite (MMC). The product could be used in industries such as aerospace, which needs materials with a high strength to weight ratio. AZ31B magnesium alloy plates and about 5 vol % SiC powder are selected as matrix and reinforcement particles, respectively. The effect of the number of FSP passes, the rotational and traverse speed on the particle distribution and the matrix microstructure of MMC are investigated. Optical microscopy is used to observe both particle distribution and matrix microstructure. The results show that a perfect particle distribution with no defect can be achieved at very low rotational and transverse speeds which are 300 rpm and 15mm/min. Moreover, the number of passes significantly improves the particle distribution. The mean grain size decreases from 9.5 μm to 1.95μm for a 4-pass MMC.


2019 ◽  
Vol 7 (2) ◽  
pp. 49
Author(s):  
SINGH SUPREET ◽  
KAUR MANPREET ◽  
KUMAR MANOJ ◽  
SINGH HARPRABHJOT ◽  
SINGH NAVNEETINDER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document