scholarly journals Influence of the beam oscillation parameters on the porosity of electron beam freeform fabricated titanium alloy SPT-2

2021 ◽  
Vol 2077 (1) ◽  
pp. 012005
Author(s):  
A V Gudenko ◽  
A P Sliva ◽  
D V Shishkin

Abstract The effect of electron beam oscillation on the formation of metal during electron beam freeform fabrication has received practically no attention. Nevertheless, it is a variable technological tool that allows to significantly influence the formation of metal during EBFFF process, including the probability of defects formation. The effect of the focus current, the form, and the frequency of the beam oscillation on the formation of pores in single beads by method of electron beam freeform fabrication of the titanium alloy SPT-2 on the substrate of the alloy VT6 was investigated. The porosity of the obtained beads was studied using x-ray images. It was found that too deep an arrangement of the focal plane relative to the substrate surface leads to excessive pore formation. Reducing the oscillation frequency from 1000 Hz to 100 Hz made it possible to completely get rid of the pores in the metal. The use of a spiral-shaped oscillation made it possible to reduce the probability of pore formation in comparison with an oscillation in the form of concentric circles.

2016 ◽  
Vol 879 ◽  
pp. 1552-1557
Author(s):  
C. Ramskogler ◽  
L. Cordero ◽  
Fernando Warchomicka ◽  
A.R. Boccaccini ◽  
Christof Sommitsch

An area of major interest in biomedical engineering is currently the development of improved materials for medical implants. Research efforts are being focused on the investigation of surface modification methods for metallic prostheses due to the fundamental bioinert character of these materials and the possible ion release from their surfaces, which could potentially induce the interfacial loosening of devices after implantation. Electron beam (EB) structuring is a novel technique to control the surface topography in metals. Electrophoretic deposition (EPD) offers the feasibility to deposit at room temperature a variety of materials on conductive substrates from colloidal suspensions under electric fields. In this work single layers of chitosan composite coatings containing titania nanoparticles (n-TiO2) were deposit by EPD on electron beam (EB) structured Ti6Al4V titanium alloy. Surface structures were designed following different criteria in order to develop specific topography on the Ti6Al4V substrate. n-TiO2 particles were used as a model particle in order to demonstrate the versatility of the proposed technique for achieving homogenous chitosan based coatings on structured surfaces. A linear relation between EPD time and deposition yield on different patterned Ti6Al4V surfaces was determined under constant voltage conditions, obtaining homogeneous EPD coatings which replicate the 3D structure (pattern) of the substrate surface. The present results show that a combination of both techniques can be considered a promising surface modification approach for metallic implants, which should lead to improved interaction between the implant surface and the biological environment for orthopaedic applications.


2016 ◽  
Vol 23 (4) ◽  
pp. 1006-1014 ◽  
Author(s):  
Nicola Vivienne Yorke Scarlett ◽  
Peter Tyson ◽  
Darren Fraser ◽  
Sheridan Mayo ◽  
Anton Maksimenko

Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM®(electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
Imre Pozsgai ◽  
Klara Erdöhalmi-Torok

The paintings by the great Hungarian master Mihaly Munkacsy (1844-1900) made in an 8-9 years period of his activity are deteriorating. The most conspicuous sign of the deterioration is an intensive darkening. We have made an attempt by electron beam microanalysis to clarify the causes of the darkening. The importance of a study like this is increased by the fact that a similar darkening can be observed on the paintings by Munkacsy’s contemporaries e.g Courbet and Makart. A thick brown mass the so called bitumen used by Munkacsy for grounding and also as a paint is believed by the art historians to cause the darkening.For this study, paint specimens were taken from the following paintings: “Studio”, “Farewell” and the “Portrait of the Master’s Wife”, all of them are the property of the Hungarian National Gallery. The paint samples were embedded in a polyester resin “Poly-Pol PS-230” and after grinding and polishing their cross section was used for x-ray mapping.


Author(s):  
M.E. Cantino ◽  
M.K. Goddard ◽  
L.E. Wilkinson ◽  
D.E. Johnson

Quantification in biological x-ray microanalysis depends on accurate evaluation of mass loss. Although several studies have addressed the problem of electron beam induced mass loss from organic samples (eg., 1,2). uncertainty persists as to the dose dependence, the extent of loss, the elemental constituents affected, and the variation in loss for different materials and tissues. in the work described here, we used x-ray counting rate changes to measure mass loss in albumin (used as a quantification standard), salivary gland, and muscle.In order to measure mass loss at low doses (10-4 coul/cm2 ) large samples were needed. While freeze-dried salivary gland sections of the required dimensions were available, muscle sections of this size were difficult to obtain. To simulate large muscle sections, frog or rat muscle homogenate was injected between formvar films which were then stretched over slot grids and freeze-dried. Albumin samples were prepared by a similar procedure. using a solution of bovine serum albumin in water. Samples were irradiated in the STEM mode of a JEOL 100C.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3048
Author(s):  
Rok Podlipec ◽  
Esther Punzón-Quijorna ◽  
Luka Pirker ◽  
Mitja Kelemen ◽  
Primož Vavpetič ◽  
...  

The metallic-associated adverse local tissue reactions (ALTR) and events accompanying worn-broken implant materials are still poorly understood on the subcellular and molecular level. Current immunohistochemical techniques lack spatial resolution and chemical sensitivity to investigate causal relations between material and biological response on submicron and even nanoscale. In our study, new insights of titanium alloy debris-tissue interaction were revealed by the implementation of label-free high-resolution correlative microscopy approaches. We have successfully characterized its chemical and biological impact on the periprosthetic tissue obtained at revision surgery of a fractured titanium-alloy modular neck of a patient with hip osteoarthritis. We applied a combination of photon, electron and ion beam micro-spectroscopy techniques, including hybrid optical fluorescence and reflectance micro-spectroscopy, scanning electron microscopy (SEM), Energy-dispersive X-ray Spectroscopy (EDS), helium ion microscopy (HIM) and micro-particle-induced X-ray emission (micro-PIXE). Micron-sized wear debris were found as the main cause of the tissue oxidative stress exhibited through lipopigments accumulation in the nearby lysosome. This may explain the indications of chronic inflammation from prior histologic examination. Furthermore, insights on extensive fretting and corrosion of the debris on nm scale and a quantitative measure of significant Al and V release into the tissue together with hydroxyapatite-like layer formation particularly bound to the regions with the highest Al content were revealed. The functional and structural information obtained at molecular and subcellular level contributes to a better understanding of the macroscopic inflammatory processes observed in the tissue level. The established label-free correlative microscopy approach can efficiently be adopted to study any other clinical cases related to ALTR.


Sign in / Sign up

Export Citation Format

Share Document