scholarly journals Preparation and properties of ice cream flowers Ce/TiO2 photocatalyst

2021 ◽  
Vol 2079 (1) ◽  
pp. 012010
Author(s):  
Qi Fang ◽  
Xiaoxia Ou ◽  
Xiaoyu Yang ◽  
Ke Zhao ◽  
Fengjie Zhang ◽  
...  

Abstract TiO2 composite photocatalysts with doping amounts of Ce (0.5%Ce/TiO2, 1%Ce/TiO2, 2%Ce/TiO2, 3%Ce/TiO2 and 5%Ce/TiO2)were synthesized via a sol-gel method.The structure and morphology of the prepared composites were characterized by XRD, SEM, DRS, XPS. At the same time, the photocatalytic effect of the composite on rhodamine B (RhB) solution under simulated visible light irradiation was explored.The results indicated that the crystal of powder catalyst was anatase type TiO2, and the directional aggregation of Ce/TiO2 composite photocatalyst showed ice cream flowers-shaped structure.The photocatalysis activity was the best when Ce doping amounts were 3%.The degradation rate of RhB was 96% in 120 min, which was 50% higher than pure TiO2.Hydroxyl radical (⋅OH) played a leading role in the whole photodegradation reaction system, and its contribution rate was about 66.4%.

2013 ◽  
Vol 423-426 ◽  
pp. 67-71
Author(s):  
Yan Wen Feng

TiO2/tourmaline composite photocatalyst materials were fabricated mainly by the sol-gel technique. Study found that, TiO2/tourmaline composite photocatalyst materials, under the bombardment by electron beam in SEM, would turn to be brighter and attract each other, and the electrostatic gravitation among the TiO2/tourmaline composite photocatalyst materials granules grow up evidently on their surfaces with the accumulations of electron from the electron probe, so as to be strong enough to force the TiO2/tourmaline composite photocatalyst materials granules to be shifted rapidly and accumulated into clusters ultimately, and the granules which were heat treatment on 600°C for 3h shifted most strongly. And the average absorption rate of TiO2/tourmaline composite photocatalyst material was stronger than nano-TiO2, in the visible region of wavelength 400-500nm. In addition, TiO2/tourmaline composite photocatalyst materials were capable of activating water molecules to reduce agglomeration of water molecules, and to increase the amount of dissolved oxygen in the Photocatalytic reaction system.


2015 ◽  
Vol 3 (34) ◽  
pp. 17858-17865 ◽  
Author(s):  
Xiaohong Hu ◽  
Qi Zhu ◽  
Xinlong Wang ◽  
Naoki Kawazoe ◽  
Yingnan Yang

P/Ag/Ag2O/Ag3PO4/TiO2 composite photocatalyst has been successfully prepared by a sol–gel method. It shows highly enhanced photocatalytic ability and stability under simulated solar light irradiation.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2553
Author(s):  
Yu Tu ◽  
Weihua Ao ◽  
Chunhong Wang ◽  
Tianyu Ren ◽  
Lijuan Zhang ◽  
...  

Modified microspheres (SiO2-M) were obtained by the hydrolytic modification of silicon dioxide (SiO2) microspheres with Na2SiO3, and then, SiO2-M was used as a carrier to prepare a composite photocatalyst (SiO2-M/TiO2) using the sol-gel method; i.e., nano-TiO2 was loaded on the surface of SiO2-M. The structure, morphology, and photocatalytic properties of SiO2-M/TiO2 were investigated. Besides, the mechanism of the effect of SiO2-M was also explored. The results show that the hydrolytic modification of Na2SiO3 coated the surface of SiO2 microspheres with an amorphous SiO2 shell layer and increased the quantity of hydroxyl groups. The photocatalytic performance of the composite photocatalyst was slightly better than that of pure nano-TiO2 and significantly better than that of the composite photocatalyst supported by unmodified SiO2. Thus, increasing the loading capacity of nano-TiO2, improving the dispersion of TiO2, and increasing the active surface sites are essential factors for improving the functional efficiency of nano-TiO2. This work provides a new concept for the design of composite photocatalysts by optimizing the performance of the carrier.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Jie Yu ◽  
Angel Caravaca ◽  
Chantal Guillard ◽  
Philippe Vernoux ◽  
Liang Zhou ◽  
...  

Indoor toxic volatile organic compounds (VOCs) pollution is a serious threat to people’s health and toluene is a typical representative. In this study, we developed a composite photocatalyst of carbon nitride quantum dots (CNQDs) in situ-doped TiO2 inverse opal TiO2 IO for efficient degradation of toluene. The catalyst was fabricated using a sol-gel method with colloidal photonic crystals as the template. The as-prepared catalyst exhibited excellent photocatalytic performance for degradation of toluene. After 6 h of simulated sunlight irradiation, 93% of toluene can be converted into non-toxic products CO2 and H2O, while only 37% of toluene is degraded over commercial P25 in the same condition. This greatly enhanced photocatalytic activity results from two aspects: (i) the inverse opal structure enhances the light harvesting while providing adequate surface area for effective oxidation reactions; (ii) the incorporation of CNQDs in the framework of TiO2 increases visible light absorption and promotes the separation of photo-generated charges. Collectively, highly efficient photocatalytic degradation of toluene has been achieved. In addition, it can be expanded to efficient degradation of organic pollutants in liquid phase such as phenol and Rhodamine B. This study provides a green, energy saving solution for indoor toxic VOCs removal as well as for the treatment of organic wastewater.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3844
Author(s):  
Lijuan Li ◽  
Bingdong Li ◽  
Liwei Feng ◽  
Xiaoqiu Zhang ◽  
Yuqian Zhang ◽  
...  

In this work, Au-modified F-TiO2 is developed as a simple and efficient photocatalyst for H2O2 production under ultraviolet light. The Au/F-TiO2 photocatalyst avoids the necessity of adding fluoride into the reaction medium for enhancing H2O2 synthesis, as in a pure TiO2 reaction system. The F− modification inhibits the H2O2 decomposition through the formation of the ≡Ti–F complex. Au is an active cocatalyst for photocatalytic H2O2 production. We compared the activity of TiO2 with F− modification and without F− modification in the presence of Au, and found that the H2O2 production rate over Au/F-TiO2 reaches four times that of Au/TiO2. In situ electron spin resonance studies have shown that H2O2 is produced by stepwise single-electron oxygen reduction on the Au/F-TiO2 photocatalyst.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1622
Author(s):  
Xiao-Pin Guo ◽  
Peng Zang ◽  
Yong-Mei Li ◽  
Dong-Su Bi

2-methylisoborneol (2-MIB) is a common taste and odor compound caused by off-flavor secondary metabolites, which represents one of the greatest challenges for drinking water utilities worldwide. A TiO2-coated activated carbon (TiO2/PAC) has been synthesized using the sol-gel method. A new TiO2/PAC photocatalyst has been successfully employed in photodegradation of 2-MIB under UV light irradiation. In addition, the combined results of XRD, SEM-EDX, FTIR and UV-Vis suggested that the nano-TiO2 had been successfully loaded on the surface of PAC. Experimental results of 2-MIB removal indicated that the adsorption capacities of PAC for 2-MIB were higher than that of TiO2/PAC. However, in the natural organic matter (NOM) bearing water, the removal efficiency of 2-MIB by TiO2/PAC and PAC were 97.8% and 65.4%, respectively, under UV light irradiation. Moreover, it was shown that the presence of NOMs had a distinct effect on the removal of MIB by TiO2/PAC and PAC. In addition, a simplified equivalent background compound (SEBC) model could not only be used to describe the competitive adsorption of MIB and NOM, but also represent the photocatalytic process. In comparison to other related studies, there are a few novel composite photocatalysts that could efficiently and rapidly remove MIB by the combination of adsorption and photocatalysis.


2013 ◽  
Vol 750-752 ◽  
pp. 1397-1400 ◽  
Author(s):  
Li Mei Duan ◽  
Jing Hai Liu ◽  
Xiu Ting Xu ◽  
Ling Xu ◽  
Zong Rui Liu

Applying one-step solvothermal synthesis method, different CdS/TiO2 nanocomposite materials are obtained by changing the ratio of sulfur and titanium sources. The composite structure and morphology are determined by XRD and TEM. Taking the degradation of methyl orange solution as a model reaction, the photocatalytic activity of CdS/TiO2 composite materials is investigated. The results show that the amount of CdS in composite photocatalyst has great effects on the degradation efficiency of methyl orange under the irradiation of sunlight, and the lower pH of reaction system is also needed to sustain the high degradation efficiency for methyl orange.


2014 ◽  
Vol 989-994 ◽  
pp. 316-319 ◽  
Author(s):  
Jing Zhu ◽  
Yong Guang Liu ◽  
Qing Qing Tian ◽  
Ling Wang ◽  
Ji Lin Cao

Li0.95Na0.05Ti2(PO4)3/C nanocomposite was prepared by sol-gel method.The structure and morphology of the samples were characterized by XRD, SEM which showed the particles had typical NASICON structure and diameter range from 400~500nm. The electrochemical performance were tested by cyclic voltammetry and galvanostatic charge–discharge. Results show Li0.95Na0.05Ti2(PO4)3/C nanocomposite exhibitsmuch better electrochemical performance than bare Li0.95Na0.05Ti2(PO4)3.


2012 ◽  
Vol 518-523 ◽  
pp. 775-779 ◽  
Author(s):  
Dong Dong Tan ◽  
De Fu Bi ◽  
Peng Hui Shi ◽  
Shi Hong Xu

The TiO2/NiFe2O4 (TN) composite nanoparticles with different mass ratios of NiFe2O4 to TiO2 were prepared via sol-gel method. X-ray diffraction was used to characterize the phase structure of TN. The results indicated that adulterating a smidgen of NiFe2O4 into the TiO2 (about 0.1%) can promote the phase transformation of TiO2, however, when the doping amount of NiFe2O4 surpasses 1%, the introduction of NiFe2O4 can inhibit the growth of TiO2 crystal grain and reduce the size of TiO2 crystal grain. The degradation experiment of methyl orange solution under UV illumination (253.7 nm) showed that the content of NiFe2O4 in the TN was higher, the photocatalytic activity of TN was worse, and the 0.1% TiO2/NiFe2O4 calcined at 400 °C presented the best photocatalytic activity.


2019 ◽  
Vol 733 ◽  
pp. 136676 ◽  
Author(s):  
Hongwei Feng ◽  
Hui Xu ◽  
Hongtu Feng ◽  
Ying Gao ◽  
Xinyuan Jin

Sign in / Sign up

Export Citation Format

Share Document