scholarly journals Rutherford’s extended formula and optimization of the gravity assists beam modelling in the Solar system

2021 ◽  
Vol 2090 (1) ◽  
pp. 012083
Author(s):  
A Grushevskii ◽  
Yu Golubev ◽  
V Koryanov ◽  
A Tuchin ◽  
D Tuchin

Abstract Rutherford’s formula for the scattering of charged α-particles in the Coulomb field can be easily generalized to the case of gravitational scattering. The extended Rutherford formula for the gravitational scattering is presented. One of the types of the gravitational scattering in the Solar system is the gravity assist maneuvers. In this paper, an effective gravitational scattering cross-section is introduced by analogy for them and the generalized Rutherford formula for gravitational scattering is presented out when performing gravity assists. Modern methods of the ballistic design of the interplanetary space flights using gravity assist maneuvers around planets [1-3] are associated with the need to calculate a lot of trajectories (i.e. of the phase beams). For their effective use it is necessary to study the structure of non-linear flyby gravitational scattering using the Rutherford’ formula and to construct the corresponding effective modelling using according regularized phase beams. It is shown that with using of such approach, it is possible to significantly increase the efficiency of the recurrent procedure for the gravity assists chains searching for ballistic scenarios of the modern interplanetary flights.

2021 ◽  
Vol 2090 (1) ◽  
pp. 012084
Author(s):  
A Grushevskii

Abstract One of the types of gravitational scattering in the Solar system within the framework of the model of the restricted three-body problem (R3BP) is gravity assist maneuvers of the “particles of insignificant mass” [1] (spacecraft, asteroids, comets, etc.). For their description, a physical analogy with the beam scattering of charged α particles in a Coulomb field is useful. However, unlike the scattering of charged particles, there are external restrictions for the possibility of gravity assists executing related from the restricted size of planet’s sphere of influence. At the same time, internal restrictions for the gravity assists performance estimated by the effective radii of planets are known from the literature on R3BP [2] (gravitational capture by the planet, falling into it). They depend from the particle asymptotic velocity relative the planet. For obvious reasons, their influence cuts off the possibility of effective gravity assists performance [3]. In this work the generalized estimates of the sizes of the near-planetary regions (“perturbation rings”), falling into which is a necessary condition for the implementation of gravity assists, are presented. The detailed analysis shows that Neptune and Saturn have the characteristic “perturbation rings” of the largest sizes in the Solar system, and Jupiter occupies only the fourth place in this checklist.


2021 ◽  
pp. 1-26 ◽  
Author(s):  
Yury Filippovich Golubev ◽  
Alexey Vasilyevich Grushevskii ◽  
Victor Vladimirovich Korianov ◽  
Andrey Georgievich Tuchin ◽  
Denis Andreevich Tuchin

2020 ◽  
Vol 1 (12) ◽  
pp. 79-82
Author(s):  
M. U. USUPOV ◽  

The article deals with the application of adaptive methods of capital management at enterprises of the Toktogul district of the Kyrgyz Republic. This area of economic work is considered a key point in the functioning of the firm. Questions of formation and effective use of own and borrowed capital largely depend on the use of modern methods of analysis.


2021 ◽  
Vol 30 (1) ◽  
pp. 103-109
Author(s):  
Natan A. Eismont ◽  
Vladislav A. Zubko ◽  
Andrey A. Belyaev ◽  
Ludmila V. Zasova ◽  
Dmitriy A. Gorinov ◽  
...  

Abstract This study discusses the usage of Venus gravity assist in order to choose and reaching any point on Venusian surface. The launch of a spacecraft to Venus during the launch windows of 2029 to 2031 is considered for this purpose. The constraints for the method are the re-entry angle and the maximum possible overload. The primary basis of the proposed strategy is to use the gravitational field of Venus to transfer the spacecraft to an orbit resonant to the Venusian one – with the aim of expanding accessible landing areas. Results of the current research show that this strategy provides an essential increase in accessible landing areas and, moreover, may provide an access to any point on the surface of Venus with a small increase in ∆V required for launch from the Earth and in the flight duration. The comparison with the landing without using gravity assist near planet is also given.


2017 ◽  
Vol 98 (11) ◽  
pp. 2387-2396 ◽  
Author(s):  
Keith T. Strong ◽  
Joan T. Schmelz ◽  
Julia L. R. Saba ◽  
Therese A. Kucera

Abstract The Sun is often racked by short-term violent events such as flares and coronal mass ejections (CMEs) but these two phenomena are often confused. Both are caused by the release of energy due to the reconnection of stressed and unstable magnetic fields. Flares bathe the solar system in electromagnetic radiation from gamma rays to radio emissions. CMEs throw billions of tons of solar plasma into interplanetary space at velocities of over 1,000 km s−1. Flares can occur without significant ejecta being spewed out from the Sun into the solar system. CMEs can occur without a significant flare being detected. The most violent and dangerous events occur when a large flare is accompanied by a major eruption. These violent events are much more common near solar maximum but can occur at any time during the solar cycle, so we are rarely completely immune to their effects. Various types of solar activity can lead to problems with electrical grids, navigation systems, and communications, and can present a hazard to astronauts, as will be discussed in future papers in this series.


Author(s):  
Roman A. EVDOKIMOV

A review of the reports of the last two Moscow International Symposia on Solar System Research has been completed. In the first part of the review, 43 reports of the main session of the "Mars" section are considered. The works of leading experts in the field of planetary science cover a wide range of scientific and applied problems - from the study of the geological history and climate of Mars, the search for traces of life and subsurface water reserves, to new technologies in planetary research, mission planning, as well as monitoring solar activity and radiation conditions in the interplanetary space, orbit and the surface of Mars. The data obtained in the last two decades has made it possible to significantly advance in understanding the nature of Mars, but many unresolved questions remain regarding the climate in the early era, the existence of the Martian oceans in the past, biological and geological activity. The scientific results obtained by unmanned spacecraft should be fully taken into account in the development of manned deep space exploration programs. Key words: Solar system, planetology, international symposium, deep space, automatic interplanetary stations, Mars, Moon, reports review


1959 ◽  
Vol 9 ◽  
pp. 3-7
Author(s):  
F. G. Smith

Radio astronomy has been expanding into outer space so fast in recent years that it is pleasant to find our own solar system at last receiving the attention it deserves. In this session we are concerned with everything within the system except the sun and our own planet. I start with a question, to which I shall return later: Where does the sun end? In another session you will hear of the experiments on the far-out parts of the solar corona; here we are concerned with interplanetary space as well as with the planets themselves, and what lies within this region may or may not be considered part of the solar corona.


1991 ◽  
Vol 126 ◽  
pp. 21-28
Author(s):  
E. Grün ◽  
H. Fechtig ◽  
M. S. Hanner ◽  
J. Kissel ◽  
B.-A. Lindblad ◽  
...  

AbstractIn-situ measurements of interplanetary dust have been performed in the heliocentric distance range from 0.3 AU out to 18 AU. Due to their small sensitive areas (typically 0.01 m2for the highly sensitive impact ionization sensors) or low mass sensitivities (≥10−9g of the large area penetration detectors) previous instruments recorded only a few 100 impacts during their lifetimes. Nevertheless, important information on the distribution of dust in interplanetary space has been obtained between 0.3 and 18 AU distance from the Sun. The Galileo dust detector combines the high mass sensitivity of impact ionization detectors (10−15g) together with a large sensitive area (0.1 m2). The Galileo spacecraft was launched on October 18, 1989 and is on its solar system cruise towards Jupiter. Initial measurements of the dust flux from 0.7 to 1.2 AU are presented.


Sign in / Sign up

Export Citation Format

Share Document