scholarly journals Study on Influencing Factors and Laws of Fuel Injection Consistency of Common Rail Injector

2021 ◽  
Vol 2097 (1) ◽  
pp. 012001
Author(s):  
Ziwei Zhang ◽  
Chunlong Xu

Abstract In order to study the influence of parameters of common rail injector internal components on cycle injection consistency, its simulation model is established by AMESim, and the model is validated by the experimental injection rate data. The effects of solenoid valve spring preload, gag bit lift, fuel discharge hole diameter, fuel inlet hole diameter, needle valve lift, needle valve preload and nozzle diameter on the change of injection quantity under different operating conditions are studied by simulation method, and the impact weight of each parameter on fuel injection consistency is analyzed. The results show that the preload of solenoid valve, fuel discharge hole diameter, oil inlet hole diameter, needle valve lift and nozzle diameter are the main parameters affecting the consistency of cycle injection. The percentages of five parameters influencing on the consistency of cyclic injection are 8.68-16.84%, 11.41-23.68%, 17.2086-37.74%, 12.772-18.34% and 9.69-37.27% respectively.

2012 ◽  
Vol 562-564 ◽  
pp. 1048-1053 ◽  
Author(s):  
Bing Qi Tian ◽  
Li Yun Fan ◽  
Xiu Zhen Ma ◽  
Hao Wang ◽  
Hong Bin Liu

Variations in high pressure common rail (HPCR) system characteristic parameters influence injection characteristics and lead to fluctuation of fuel injection quantity (FIQ). The fuel injection quantity fluctuation (FIQF) has adverse affects both on coherence and stability of HPCR system. Numerical simulation model of HPCR has been developed and its accuracy has been validated by experimental results. Influence law and generation mechanism of FIQF caused by variations of different parameters such as fuel return pressure, solenoid reset force, control valve lift, fuel return orifice (A orifice) diameter, fuel inlet orifice (Z orifice) diameter, injector needle lift, needle pre-tightening force and injector flow coefficient in entire operating conditions have been analyzed.


Author(s):  
Mikhail G. Shatrov ◽  
Andrey U. Dunin ◽  
Pavel V. Dushkin ◽  
Andrey L. Yakovenko ◽  
Leonid N. Golubkov ◽  
...  

Fuel injection causes considerable oscillations of fuel pressure at the injector inlet. One of the reasons is hydraulic impact when the needle valve closes. For multiple injections, the previous injections affect the following. As both the fuel pressure in rail pac and the injection rate grow, the oscillations increase. The pressure oscillation range at the common rail injector inlet at pac=1500 bar is up to 350 bar, and at the rail pressure pac=500 bar, the amplitude decreases to 80 bar. Physical properties of the fuel are also important. As the viscosity of the fuel increases, its hydraulic friction grows which results in a rapid damping of pressure oscillations. The data for an injector operating on sunflower oil is presented. As compared with diesel fuel, the oscillations range decreases from 400 to 250 bar at the same operating mode. The influence of the interval between the impulses of a double injection on the injection rate of the second fuel portion was investigated. Superposition of two waves during multiple injections may result in amplification and damping of the oscillations. Simulation was performed to estimate the influence of fuel type and time interval Δτ between control impulses of a double injection on the injection quantity of the second portion at pressures of 2000-3000 bar. When the rail pressure pac grows, the oscillations and their impact on the injection process increase. For diesel fuel at pressure of pac=2000 bar, the variation in injection rates of the second portion is 2.36-4.62 mg, and at pac=3000 bar – 1.58-6.63 mg.


2018 ◽  
Vol 128 ◽  
pp. 1579-1587 ◽  
Author(s):  
Jianhui Zhao ◽  
Pengfei Yue ◽  
Leonid Grekhov ◽  
Xiuzhen Ma

2014 ◽  
Vol 26 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Dongmin Li ◽  
◽  
Jianzhong Zhang ◽  
Jianjun Yuan ◽  
FancanGuo ◽  
...  

In order to improve the measurement accuracy of fuel injection quantity based on Test Bench for fuel injection Pump (abbr. TB4P), on the basis of the function between needle valve lift and fuel injection quantity, two-level pressure adjustment module, which combines proportional flow rate valve with pressure sensor and takes advantage of spring of fuel injector, is used to control the outlet pressure of fuel injection pump, which results in the fuel injection pressure stably. Fuel injection pump and fuel injector are modeled by use of HCD of AMESim, and the system model of fuel injection quantity measurement is built. Simulation curve of fuel injection quantity is got by AMESim, which is compared with the curve of standard fuel injection quantity according to relative error. The results show that the relative error from the data of simulation system is smaller, so the methods of measurement and simulation in this paper are effective.


Author(s):  
A.Y. Dunin ◽  
M.G. Shatrov ◽  
L.N. Golubkov ◽  
A.L. Yakovenko

For effective reduction of noise level and nitrogen oxide content in exhaust fumes of diesel engines, multistage fuel injection is used in combination with control of the front edge shape of the main injection. At the Moscow Automobile and Road Construction State Technical University (MADI), a method of control of the injection rate shape using an electric impulse was proposed, which was applied to the electromagnet of the control valve of the injector of the common rail fuel system. A computational and experimental analysis of the possibility of boot-type injection rate shape was carried out. The studies involved three most used designs of the common rail injector (CRI): CRI 1 featuring a control valve with shut-off cone and piston; CRI 2 consisting of a flat-lock control valve and a needle, which does not overlap the drain when the needle is in the highest position; CRI 3 with an injector that partially overlaps the drain. It was established that friction in the control valve piston and the guide surface pair of CRI 1 complicated the implementation of the boot-type injection rate due to its smoothing. CRI 2 and CRI 3 provide boot-type injection rate at different pressures in the fuel accumulator. The CRI 3 example shows that the instability of fuel supply during boot-type injection rate is comparable with that of fuel pre-injection, which is widely used in the organization of the common rail diesel engines working process.


Author(s):  
Riccardo Morselli ◽  
Enrico Corti ◽  
Giorgio Rizzoni

The common rail injection system has allowed torque and power performance of diesel engines to improve greatly, while reducing fuel consumption and conforming to emissions standards. This paper proposes a simple but effective energy-based model of a common rail injector as a basis for the implementation of the advanced fuel injection control strategies. The proposed model has been validated comparing the simulation results with real experimental data. The obtained results show how the dynamic behavior of the injector is well captured by the model.


2013 ◽  
Vol 344 ◽  
pp. 182-185 ◽  
Author(s):  
Yong Zhi Zhang ◽  
Zhe Zuo ◽  
Bo Lan Liu

This paper proposed a kind of intelligent driving module based on the requirements of high pressure common rail fuel injection system. Many functions of this module were designed such as current multiply holding , boosting and energy recovering. This module occupies less microcontroller resources and makes injectors solenoid valve pull more smoothly. The experimental results show that the solenoid valves peak current can achieve to 20A within 0.1 ms and the storage capacitys potential was not changed significantly. This intelligent driving module could achieve the requirements of high pressure common rail driving circuit.


Author(s):  
Eileen M. Mirynowski ◽  
Ajay K. Agrawal ◽  
Joshua A. Bittle

More precise measurements of the fuel injection process can enable better combustion control and more accurate predictions resulting in a reduction of fuel consumption and toxic emissions. Many of the current methods researchers are using to investigate the transient liquid fuel sprays are limited by cross sensitivity when studying regions with both liquid and vapor phases present (i.e. upstream of the liquid length). The quantitative rainbow schlieren technique has been demonstrated in the past for gaseous fuel jets and is being developed here to enable study of the spray near the injector. In this work an optically accessible constant pressure flow rig and a modern common rail diesel injector are used to obtain high speed images of vaporizing fuel sprays at elevated ambient temperatures and pressures. Quantitative results of full-field equivalence ratio measurements are presented as well as more traditional measurements such as vapor penetration and angle for a single condition (13 bar, 180°C normal air) using nheptane injected through a single hole (0.1mm diameter) common rail fuel injector at 1000 bar fuel injection pressure. This work serves as a proof of concept for the rainbow schlieren technique being applied to vaporizing fuel sprays and full details of the image processing routine are provided. The ability of the imaging technique combined with the constant pressure flow rig make this approach ideal for generating large data sets in short periods of time for a wide range of operating conditions.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012014
Author(s):  
Ziwei Zhang

Abstract In order to study the effect of fuel leakage of an ultra-high pressure common rail injector control valve coupling on fuel injection performance, a simulation model was established by AMESim and the accuracy was verified by fuel injection test data. The leakage law of couples with different clearances was analyzed by using numerical simulation method and then the influence of control valve coupling on fuel injection performance was analyzed. The results demonstrate that the increase of the matching clearance of the slide valve coupling makes the start time of needle valve advanced and delay its end time. The injection rate and injection duration increase with the increase of the matching clearance of slide valve coupling. The increase of the matching clearance of the control plunger coupling keeps the start time of the needle valve unchanged at first, and then delay slightly, while the end time remains unchanged at first, and then show the trend of advance. The injection rate and injection duration decrease with the increase of the matching clearance of plunger coupling.


Sign in / Sign up

Export Citation Format

Share Document