scholarly journals Numerical Analysis of Erosion Wear of Water with Particles in Elbows

2021 ◽  
Vol 2125 (1) ◽  
pp. 012028
Author(s):  
Chaojie Li ◽  
Yanqin Mao ◽  
Xiaoyue Wang ◽  
Zhixing Zhan ◽  
Liang Cai

Abstract In this paper, the numerical analysis of erosion wear of water with particles in elbow is carried out based on fluent. The influence of different inlet velocity and bending angle on pipeline erosion, and the distribution of pressure field and velocity field in the pipeline are studied. The main conclusions are as follows: the erosion of elbow section is more serious than that of inlet section and outlet section of pipeline. With the increase of inlet velocity, the maximum erosion rate of elbow section gradually increases, and the maximum velocity and maximum pressure inside the elbow section also increase. When other conditions are certain, different bending angles make the elbow receive different erosion effects. When the bending angle is larger, the pipeline erosion rate is relatively more uniform. Study on erosion helps to reduce the impact of fluid on the wall and improve the safety and reliability of engineering.

2014 ◽  
Vol 695 ◽  
pp. 622-626 ◽  
Author(s):  
Mohamad Nor Musa ◽  
Mohd Nurul Hafiz Mukhtar

This paper present new result for experimental analysis of air flow velocity and pressure distributions between two ducts bend: (1) 90° duct bend with a single turning vane having 0.03m radius and (2) 90° duct bend with double turning vane, in 0.06 × 0.06 m duct cross section. The experiment used five different Reynolds numbers chosen between the ranges 1 ×104 and 6×104. Each experiment has four point measurements: (1) point 1 and point 2 at cross section A-A and (2) point 3 and point 4 at cross section B-B. The first experimental study used single turning vane radius 0.03m with inlet air velocity from 2.5m/s to 12.2m/s. And for the second experiment that used square turning vane with 0.03m radius. In experiment 2, the inlet air velocity also start from 2.5m/s to 12.2m/s. From analysis results, the pressure drop in experiment 1 is higher than experiment 2. As example the maximum pressure drop at 7.5m/s inlet air velocity between point 1 and 3 was found to be 71.6203 Pa in experiment 1 as compared to 61.8093 Pa in experiment 2. The velocity after duct bend is greater when using double turning vane compare used single turning vane as maximum velocity at point 3 in experiment 2 compare to velocity at point 3 in experiment 1 that is 55.677× 10-4 m/s and 54.221× 10-4 m/s. The velocity at duct wall is equal to zero. When increase the value of Reynolds number or inlet velocity, the maximum velocity and total pressure also increase. For example in experiment 1 at point 1, the velocity is 48.785 × 10-4 m/s at Reynolds number 1 ×104 and velocity 65.115×10-4 m/s at Reynolds number 12.2 ×104 . Velocity flow in duct section are lower than inlet velocity. In experiment 1, the inlet velocity is 2.5m/s meanwhile the maximum velocity in the duct section at point 2 is 73.075×10-4 m/s that is much more lower than inlet velocity.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Kang Shu ◽  
Wen-Jian Wang ◽  
Enrico Meli ◽  
Hao-Hao Ding ◽  
Zhen-Yu Han ◽  
...  

Abstract Usually, rail materials are exactly affected by the erosion of windblown sand in the desert environment. For this reason, the influence of impact angle, particle velocity, and particle size on the erosion wear behavior of the U75V heat-treated rail steel, a material frequently employed in Chinese railways, were studied in this work. The results showed that, with increasing impact angle, the erosion rate increased between 15 deg and 45 deg, decreased between 45 deg and 75 deg, and then increased again between 75 deg and 90 deg. The highest erosion rate occurred at about 45 deg. When the particle velocity increased, the erosion rate increased approximately in a quadratic way. As the sand particle size increased, the erosion rate presented a decreasing trend. During the initial stage of erosion, shear craters, indentation craters, and ploughing craters were the main surface damage features. The shear craters predominated at the impact angle of 45 deg whereas the indentation craters predominated at 90 deg. During the steady-state of erosion, the rail damage was mainly composed of craters, platelets, and cracks. Both the length and depth of craters increased almost linearly with increasing particle velocity, whereas the increased rate of length was significantly higher than that of depth. The length and depth of craters increased with increasing particle size at 90 deg, whereas only the length increased with increasing particle size at 45 deg. The microstructure evolution and the formation mechanism of platelet at low impact angles were different from those at high impact angles. Platelet formation was the main erosion wear mechanism.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 886
Author(s):  
Zongliu Huang ◽  
Guangtai Shi ◽  
Xiaobing Liu ◽  
Haigang Wen

The turbulence dissipation will cause the increment of energy loss in the multiphase pump and deteriorate the pump performance. In order to research the turbulence dissipation rate distribution characteristics in the pressurized unit of the multiphase pump, the spiral axial flow type multiphase pump is researched numerically in the present study. This research is focused on the turbulence dissipation rate distribution characteristics in the directions of inlet to outlet, hub to rim, and in the circumferential direction of the rotating impeller blades. Numerical simulation based on the RANS (Reynolds averaged Navier–Stokes equations) and the k-ω SST (Shear Stress Transport) turbulence model has been carried out. The numerical method is verified by comparing the numerical results with the experimental data. Results show that the regions of the large turbulence dissipation rate are mainly at the inlet and outlet of the rotating impeller and static impeller, while it is almost zero from the inlet to the middle of outlet in the suction surface and pressure surface of the first-stage rotating impeller blades. The turbulence dissipation rate is increased gradually from the hub to the rim of the inlet section of the first-stage rotating impeller, while it is decreased firstly and then increased on the middle and outlet sections. The turbulence dissipation rate distributes unevenly in the circumferential direction on the outlet section. The maximum value of the turbulence dissipation rate occurs at 0.9 times of the rated flow rate, while the minimum value at 1.5 times of the rated flow rate. Four turning points in the turbulence dissipation rate distribution that are the same as the number of impeller blades occur at 0.5 times the blade height at 0.9 times the rated flow rate condition. The turbulence dissipation rate distribution characteristics in the pressurized unit of the multiphase pump have been studied carefully in this paper, and the research results have an important significance for improving the performance of the multiphase pump theoretically.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Hirotoshi Sasaki ◽  
Yuka Iga

This study explains why the deep erosion pits are formed in liquid droplet impingement erosion even though the droplets uniformly impinge on the entire material surface. Liquid droplet impingement erosion occurs in fluid machinery on which droplets impinge at high speed. In the process of erosion, the material surface becomes completely roughened by erosion pits. In addition, most material surface is not completely smooth and has some degree of initial roughness from manufacturing and processing and so on. In this study, to consider the influence of the roughness on the material surface under droplet impingement, a numerical analysis of droplets impinging on the material surface with a single wedge and a single bump was conducted with changing offsets between the droplet impingement centers and the roughness centers on each a wedge bottom and a bump top. As results, two mechanisms are predicted from the present numerical results: the erosion rate accelerates and transitions from the incubation stage to the acceleration stage once roughness occurs on the material surface; the other is that deep erosion pits are formed even in the case of liquid droplets impinging uniformly on the entire material surface.


Author(s):  
Yu Wang ◽  
Qi He ◽  
Ming Liu ◽  
Weixiong Chen ◽  
Junjie Yan

In pulverized coal-fired plant, the U-type bend is commonly used in flue gas and pulverized coal pipe system to due to the constraints of outer space. And gas-solid two-phase flow exists in these pipelines. The erosion of the pipe has significant effect on the safety and reliability of pipelines. In present paper, the erosion characteristics of U-type bend were investigated through CFD (Computational Fluid Dynamics) method. The wear distribution on the pipe wall was obtained. And the particle flow characteristics in U-type bend were analyzed. The influence of inlet velocity, mass loading rate and particle size on the erosion rate was studied as well. Result suggested that the maximum erosion rate increases exponentially with the increase of inlet velocity. And maximum erosion rate increases linearly with the increasing mass loading rate. Increasing particle size can aggravate the wear on the pipe wall.


2014 ◽  
Vol 960-961 ◽  
pp. 621-624
Author(s):  
Jing Zhao Zhang ◽  
Yong Sheng Yan ◽  
Zhen Guo Yan ◽  
Feng Liang Wu

The optimized air measuring station location of mine airway based on air fully developed was proposed and numerical tests were conducted with six models. The independence of air fully development and inlet velocity was analyzed which validated the models and the numerical methods. The results show that optimized air measuring station location in head entry is 132m-198m after the airway turning while 5.0m-10.1m before the airway turning in tail entry.


Author(s):  
Fan Gong ◽  
Yong Huang

The objective of this work is to investigate the flame stabilization mechanism and the impact of the operating conditions on the characteristics of the steady, lean premixed flames. It’s well known that the flame base is very important to the existence of a flame, such as the flame after a V-gutter, which is typically used in ramjet and turbojet or turbofan afterburners and laboratory experiments. We performed two-dimensional simulations of turbulent premixed flames anchored downstream of the heat-conducting V-gutters in a confined passage for kerosene-air combustion. The flame bases are symmetrically located in the shear layers of the recirculation zone immediately after the V-gutter’s trailing edge. The effects of equivalence ratio of inlet mixture, inlet temperature, V-gutter’s thermal conductivity and inlet velocity on the flame base movements are investigated. When the equivalence ratio is raised, the flame base moves upstream slightly and the temperature gradient dT/dx near the flame base increases, so the flame base is strengthened. When the inlet temperature is raised, the flame base moves upstream very slightly, and near the flame base dT/dx increases and dT/dy decreases, so the flame base is strengthened. As the V-gutter’s thermal conductivity increases, the flame base moves downstream, and the temperature gradient dT/dx near the flame base decreases, so the flame base is weakened. When the inlet velocity is raised, the flame base moves upstream, and the convection heat loss with inlet mixture increases, so the flame base is weakened.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Jie Zhang ◽  
Hao Yi ◽  
Zhuo Huang ◽  
Jiadai Du

With the deepening of natural gas exploitation, the problem of sand production in gas wells is becoming more and more serious, especially in high-yield gas wells. The solid particles in natural gas are very likely to cause erosion and wear of downstream pipelines and throttling manifolds, which makes the pipeline ineffective. Once the pipeline is damaged, the natural gas leaks, which may cause serious catastrophic accidents. In this paper, the impact of sand particles on the pipeline wall is predicted by the analysis of the research on bent and continuous pipeline combined with particle collision model. The parameters of different particles (particle shape factor, particle velocity, and particle diameter), different bent parameters (angle, diameter, and curvature-to-diameter ratio), and the influence of different continuous pipeline parameters (assembly spacing and angle) are explored on the erosion and wear mechanism of curved pipeline. The results show that the shape of the particles has a great influence on the wear of the curved pipeline. As the shape factor of the particles decreases, the wear tends to decrease. The bent area is subject to erosion changes as the particle parameters and piping parameters. The increase in pipeline diameter is beneficial to reduce the maximum and the average erosion wear rate. When the bent angle of the pipeline is less than 90 deg, the maximum erosion wear rate is basically the same. But when it is greater than 90 deg, it decreases with the increase in the bent angle. When the assembly angle of double curved pipeline is between 0 deg and 60 deg, the elbow is subject to severe erosion wear. At the same time, increasing the assembly spacing is beneficial to reduce the erosion wear rate. The research can provide a theoretical support for subsequent engineering applications.


2013 ◽  
Vol 30 (05) ◽  
pp. 1350020 ◽  
Author(s):  
ZHUPING LIU ◽  
QIUHONG ZHAO ◽  
SHOUYANG WANG ◽  
JIANMING SHI

This paper investigates the impact of partial information sharing in a three-echelon supply chain. Partial information sharing means that information sharing occurs only between the distributor and the retailer, but not between the distributor and the manufacturer. This paper contributes to the literature by summarizing the circumstances in which information sharing between the retailer and the distributor benefits the manufacturer. In addition, our study points out that such information sharing does not always bring benefits to the manufacturer and that in some cases the information sharing may harm the manufacturer. We explain the reasons why this can happen and give managerial intuition for our results. Using numerical analysis, we illustrate the impact of partial information sharing on the agents in the supply chain with the change of the autoregressive coefficient in the demand process.


Sign in / Sign up

Export Citation Format

Share Document