scholarly journals Mathematical modeling of the properties of thermal insulation materials based on hollow ceramic microspheres and phenylon

2021 ◽  
Vol 2131 (4) ◽  
pp. 042041
Author(s):  
K V Smirnov ◽  
V Yu Chukhlanov ◽  
N N Smirnova

Abstract In this work, the creation of heat-insulating materials that are still operable at temperatures up to + 400 °C and have increased physical and mechanical characteristics was studied. This aim was achieved by using a heat-resistant polymer binder phenylon (an aromatic polyamide) and hollow ceramic microspheres, that were used as a filler. Phenylon was produced by OJSC «Polimersintez» in Vladimir. Hollow ceramic microspheres are the floating fractions of flue emissions from solid-fuel thermal power plants. Thermal insulation materials were made by mixing hollow ceramic microspheres with a phenylon solution in dimethylacetamide to the state of «wet sand». Then, the obtained substance was molded the solvent residues were removed. Furthermore, the main properties of the obtained materials were also studied. It was established that the thermal insulation material is characterized by high strength characteristics, has significant resistance to impact loads and is operable at temperatures up to 400 °C The developed thermal insulation materials are intended to be used in the construction of objects operating under the conditions of cyclic exposure to high temperatures (for example, power plants) and in the construction of objects operating under the conditions of cyclic exposure to high temperatures (for example, power facilities).

2018 ◽  
Vol 7 (3.2) ◽  
pp. 692
Author(s):  
Dmytro Storozhenko ◽  
Oleksandr Dryuchko ◽  
Teofil Jesionowski

The raw material mixture from the silicon-like technogenic component the ash-removal of thermal power plants and the preparation methods of  waterproof porous heat-insulated materials wide usage for raw mass hot foaming powdered two-stage technology are developed. The development uses the polyfunctional properties of liquid glass  as a) the binder component; c) breeder; c) the speed regulator of the clamping mass hardenin. Its optimized version begins to solidify at its usual temperature from the moment its "reproduction" is soluble glass and forms a paste-shaped cake with a set of properties necessary for the next fragmentation. The proposed formulation allows compositions processing in various ways, with the formation of granular heat-insulating fillers, materials for thermal insulation in complex structures, slab and shell-like types of thermal insulation materials. The task is set, depending on the goals and features of the tasks being solved; it is possible to conduct several different methods at the final stages of their obtaining. Two stages of the recycling process determine the character and behavior of the rare-glass composite systems constituent components during heat treatment, their strong adhesion to most structural materials and the need to solve billets easy removal problem from the molding unit. Study results can be used in the field of building materials production, in particular porous artificial products, in obtaining granular insulating material and light aggregate for concrete industrial and civil construction, in thermal engineering as thermal insulation, etc.   


2018 ◽  
Vol 281 ◽  
pp. 131-136
Author(s):  
Shi Chao Zhang ◽  
Wei Wu ◽  
Yu Feng Chen ◽  
Liu Shi Tao ◽  
Kai Fang ◽  
...  

With the increase of the speed of vehicle, the thermal protection system of its powerplant requires higher insulation materials. Phase change materials can absorb large amounts of heat in short time. So the introduction of phase change materials in thermal insulation materials can achieve efficient insulation in a limited space for a short time. In this paper, a new phase change thermal insulation material was prepared by pressure molding with microporous calcium silicate as matrix and Li2CO3 as phase change material. The morphology stability, exudation and heat insulation of the materials were tested. The results show that the porous structure of microporous calcium silicate has a good encapsulation when the phase transition of Li2CO3 is changed into liquid. And the material has no leakage during use. The thermal performance test also shows that the insulation performance of the material has obvious advantages in the short term application.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 355
Author(s):  
Chuanbin Hou ◽  
Song Xin ◽  
Long Zhang ◽  
Shangxiao Liu ◽  
Xiao Zhang

The known cooling methods for the high-temperature operating environment of a mine mainly include ventilation, refrigeration, heat insulation, and individual protection. Among them, the superior performance and wide application of the heat insulation materials have attracted the attention of the coal mining industry. In this paper, three types of mineral insulation materials were prepared using basalt fiber, glass fiber, vitrified microbeads in combination with cement, sand, high-strength ceramsite, water, etc. In addition, the thermal conductivity and compressive strength of the prepared specimens were assessed. The results show that the test specimen containing basalt fiber had a great thermal insulation effect and achieved the required compressive strength. Furthermore, according to the COMSOL simulation results, the test specimen containing basalt fiber had a better thermal insulation effect than the ordinary concrete materials. Therefore, the research results of this article have guiding significance to search for new mine thermal insulation materials.


Author(s):  
Takashi Sato ◽  
Kohji Tamura ◽  
Koichi Mitsuhata ◽  
Ryuichi Ikura

With the increase of steam parameters of coal-fired thermal power plants, high strength 9%Cr steel containing niobium and vanadium became major material in high temperature boiler components. As the microstructure of these steels is tempered martensite, it is known that the softening occurs in HAZ of the weldment. In the creep rupture test of these welded joints the rupture strength is lower than that of the parent metal, and sometimes this reduction of strength is caused by Type IV cracking. To develop an effective method to improve the rupture strength of welded joints, a normalizing-tempering heat treatment after weld was proposed. 9Cr1MoNbV plates with a thickness of 40–50 mm were welded by 10 mm width automatic narrow gap MAG welding procedure using specially modified welding material. After normalizing at 1050C and tempering at 780C, material properties of the welded joints were examined. Microstructure of the HAZ was improved as before weld, and rupture strength of the welded joints was equal to that of the parent metal. The long term rupture strength of the welded joints as confirmed in the test exceeded 30,000 hours. This welding procedure has been applied to the seam weld of boiler hot reheat piping in USC plants successfully.


2014 ◽  
Vol 564 ◽  
pp. 315-320 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Mahmoud Tahat

The impact of the thermal conductivity (k-value) change of polystyrene insulation material in building envelope due to changes in temperature on the thermal and energy performance of a typical residential building under hot climate is investigated. Indeed, the thermal and energy performance of buildings depends on the thermal characteristics of the building envelope, and particularly on the thermal resistance of the insulation material used. The thermal insulation material which is determined by its thermal conductivity, which describes the ability of heat to flow cross the material in presence of a gradient of temperature, is the main key to assess the performance of the thermal insulation material. When performing the energy analysis or calculating the cooling load for buildings, we use published values of thermal conductivity of insulation materials, which are normally evaluated at 24°C according to the ASTM standards. In reality, thermal insulation in building is exposed to significant and continuous temperature variations, due essentially to the change of outdoor air temperature and solar radiation. Many types of insulation materials are produced and used in Oman, but not enough information is available to evaluate their performance under the prevailing climatic condition. The main objective of this study is to investigate the relationship between the temperature and thermal conductivity of various densities of polystyrene, which is widely used as building insulation material in Oman. Moreover, the impact of thermal conductivity variation with temperature on the envelope-induced cooling load for a simple building model is discussed. This work will serve as a platform to investigate the effect of the operating temperature on thermal conductivity of other building material insulations, and leads to more accurate assessment of the thermal and energy performance of buildings in Oman.


2016 ◽  
Vol 678 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Kono ◽  
Yutaka Goto ◽  
York Ostermeyer ◽  
Rolf Frischknecht ◽  
Holger Wallbaum

Thermal insulation material is an important component to reduce the environmental impact of buildings through the reduction of energy consumption in the operation phase. However, the material itself has embodied environmental impacts for the value it provides. Eco-efficiency is a method that quantifies relation between the environmental performance and the created value of a product system. This study investigated contributing factors of the eco-efficiency of thermal insulation materials to support decision making of material manufacturers. For the improvement of eco-efficiency, the assessment was made in two scopes: investigating the contributing factors of impact caused at production processes; and thermal performance through thermo-physical properties. For quantifying environmental impacts, cradle-to-grave life cycle assessment (LCA) of each materials were made. The life cycle impact assessment (LCIA) indicators used were ReCiPe H/A and global warming potential (GWP100a). For the assessment of production process, the inventories of the materials were assigned to six categories: heat, chemicals, electricity, transportation, raw materials and wastes. Among the assessed materials, contribution of electricity and heat within the production process was large for foam glass which had the highest potential to improve the eco-efficiency which was by factor 1.72. The analysis on relation between thermo-physical properties and eco-efficiency based on product data of the materials highlighted the importance of density as an indicator upon development and use. Althoughdensity often gains less attention,the finding suggested the effectiveness of improving the efficiency by having lower density without compensating the performance of the materials.


2019 ◽  
Vol 10 (2) ◽  
pp. 78-91
Author(s):  
A. V Bolotin ◽  
S. M Sergeev ◽  
A. A Lunegova ◽  
E. A Kochetkova

Modern technologies are not standing still, and scientists are trying not only to invent new building materials, but also to find non-standard use of various raw materials that were previously considered unsuitable for use. Innovative technologies are actively used for modern construction of buildings, in particular, some types of new materials are used in the construction of various facilities. This is especially true in areas where it is not possible to import or use ordinary building materials for various reasons. Often, when designing a building, developers are wondering whether it is worth making the house warm during construction, and which insulation for the walls of the house is better to choose. This article addresses the question of which insulation for walls is most suitable for construction. The most common are mineral insulation, which are represented on the market today in the form of basalt slabs, fiberglass, etc. They have such advantages as low thermal conductivity, good thermal insulation and vapor permeability. The article presents a table with comparative performance characteristics of a mineral wool stone slab and a fiberglass slab. Stone or basalt wool has several advantages. It is able to withstand significant temperatures and temperature changes, the mats are easy to transport, convenient to install. In our opinion, a serious alternative to basalt in the production of thermal insulation materials is volcanic ash. One of the main features of volcanic ash are its building qualities, such as good thermal insulation and an environmentally friendly composition. Since here we are considering the possibility of producing insulation materials based on volcanic ash, we performed a thermal calculation of the enclosing structures. Also in the tables are the costs of transportation of volcanic ash from the field to the point of the proposed production of insulating material. Volcanic ash can be widely used in countries with high volcanic activity as an inexpensive raw material for the manufacture of building materials. It does not require additional processing and has a number of useful properties.


2020 ◽  
Vol 19 (2) ◽  
pp. 21-26
Author(s):  
Michaela Horváthová ◽  
◽  
Linda Makovická-Osvaldová

The article deals with the selection of four types of insulation material based on the particular criteria. Specifically, it will be a matter of decision among facade insulation materials. We chose four species of the most used thermal insulation materials that are available on the market and are used frequently. The applied method is an analytical multilevel method that allows us to divide the whole problem into hierarchies and then compare two elements together and thus gain the weights of the criteria. Subsequently, we assessed the alternatives. The selected criteria are the price of the material, the thermal coefficient conductivity, flammability class and ignition time of the sample. The method is verified in the software BPMSG AHP priority calculator.


2019 ◽  
Vol 11 (12) ◽  
pp. 3389
Author(s):  
Heong-Won Suh ◽  
Su-Min Im ◽  
Tae-Hoon Park ◽  
Hyung-Jun Kim ◽  
Hong-Sik Kim ◽  
...  

Large-scale fires mainly due to the ignition of thermal insulation materials in the ceiling of piloti-type structures are becoming frequent. However, the fire spread in these cases is not well understood. Herein we performed small-scale and real-scale model tests, and numerical simulations using a fire dynamics simulator (FDS). The experimental and FDS results were compared to elucidate fire spread and effects of thermal insulation materials on it. Comparison of real-scale fire test and FDS results revealed that extruded polystyrene (XPS) thermal insulation material generated additional ignition sources above the ceiling materials upon melting and propagated and sustained the fire. Deformation of these materials during fire test generated gaps, and combustible gases leaked out to cause fire spread. When the ceiling materials collapsed, air flew in through the gaps, leading to flashover that rapidly increased fire intensity and degree of spread. Although the variations of temperatures in real-scale fire test and FDS analysis were approximately similar, melting of XPS and generation of ignition sources could not be reproduced using FDS. Thus, artificial settings that increase the size and intensity of ignition sources at the appropriate moment in FDS were needed to achieve results comparable to those recorded by heat detectors in real-scale fire tests.


2022 ◽  
Vol 906 ◽  
pp. 99-106
Author(s):  
Siranush Egnatosyan ◽  
David Hakobyan ◽  
Spartak Sargsyan

The use of thermal insulation materials to reduce the heating and cooling demand of the building in order to provide energy efficiency is the main solution. But there is a wide range of these products on the market and, therefore, the choice and application of these materials is a rather difficult task, since many factors must be taken into account, such as environmental safety, cost, durability, climatic conditions, application technology, etc. Basically, comfort microclimate systems are designed based on normative standards, where the thickness of the thermal insulation material is selected depending on the required heat transfer resistance. These values are calculated taking into account climate conditions, that is the duration of the heating period, as well as taking into account sanitary and hygienic requirements. This article discusses the thermal performance of building materials, and also provides a comparative analysis of the use of thermal insulation materials depending on climatic factors and on the system providing comfort microclimate. Based on the calculations by mathematical modeling and optimization, it is advisable to choose the thickness of the thermal insulation, taking into account the capital and operating costs of the comfort microclimate systems. Comparing the optimization data with the normative one, the energy efficiency of the building increases by 50-70% when applying the optimal thickness of the thermal insulation layer, and when the thermal insulation layer is increased, the thermal performance of the enclosing structures has improved by 30%, which contributes to energy saving.


Sign in / Sign up

Export Citation Format

Share Document