scholarly journals Fire Spread of Thermal Insulation Materials in the Ceiling of Piloti-Type Structure: Comparison of Numerical Simulation and Experimental Fire Tests Using Small- and Real-Scale Models

2019 ◽  
Vol 11 (12) ◽  
pp. 3389
Author(s):  
Heong-Won Suh ◽  
Su-Min Im ◽  
Tae-Hoon Park ◽  
Hyung-Jun Kim ◽  
Hong-Sik Kim ◽  
...  

Large-scale fires mainly due to the ignition of thermal insulation materials in the ceiling of piloti-type structures are becoming frequent. However, the fire spread in these cases is not well understood. Herein we performed small-scale and real-scale model tests, and numerical simulations using a fire dynamics simulator (FDS). The experimental and FDS results were compared to elucidate fire spread and effects of thermal insulation materials on it. Comparison of real-scale fire test and FDS results revealed that extruded polystyrene (XPS) thermal insulation material generated additional ignition sources above the ceiling materials upon melting and propagated and sustained the fire. Deformation of these materials during fire test generated gaps, and combustible gases leaked out to cause fire spread. When the ceiling materials collapsed, air flew in through the gaps, leading to flashover that rapidly increased fire intensity and degree of spread. Although the variations of temperatures in real-scale fire test and FDS analysis were approximately similar, melting of XPS and generation of ignition sources could not be reproduced using FDS. Thus, artificial settings that increase the size and intensity of ignition sources at the appropriate moment in FDS were needed to achieve results comparable to those recorded by heat detectors in real-scale fire tests.

2020 ◽  
Vol 34 (5) ◽  
pp. 18-26
Author(s):  
Hong-Sik Kim ◽  
Bu-Yeol Oh ◽  
Min-Young Park

In piloti-type structures, large-scale fires frequently occur because insulation materials in the ceiling are ignited. However, the spread of fire in these cases is not well known. Therefore, this study conducted small-scale (1.0 m × 1.0 m) tests and real-scale model tests. According to the results, we clarified the fire spread, temperature variation over time, and the effects of insulation materials in fire sites. For the small-scale tests, the internal structure of the ceiling was extruded polystyrene (XPS) + sheet molding compound (SMC), retardant expanded polystyrene (Retardant EPS) + sheet molding compound (SMC), and extruded polystyrene (XPS) + design metal ceiling (DMC). From the small-scale and large-scale tests that simulated a fire in a piloti-type structure, the flow of heat in the interior space and the cause of a large fire were identified. The tests were conducted with EPS+DMC, defined as the best-case scenario, and XPS+SMC, defined as the worst-case scenario during a fire accident. The results from the tests showed that combustion began when the insulation material was exposed to the fire source. Then, molten XPS fell onto the SMC, establishing a new fire source that destroyed the ceiling material, leading to increased combustion due to the inflow of oxygen.


2018 ◽  
Vol 281 ◽  
pp. 131-136
Author(s):  
Shi Chao Zhang ◽  
Wei Wu ◽  
Yu Feng Chen ◽  
Liu Shi Tao ◽  
Kai Fang ◽  
...  

With the increase of the speed of vehicle, the thermal protection system of its powerplant requires higher insulation materials. Phase change materials can absorb large amounts of heat in short time. So the introduction of phase change materials in thermal insulation materials can achieve efficient insulation in a limited space for a short time. In this paper, a new phase change thermal insulation material was prepared by pressure molding with microporous calcium silicate as matrix and Li2CO3 as phase change material. The morphology stability, exudation and heat insulation of the materials were tested. The results show that the porous structure of microporous calcium silicate has a good encapsulation when the phase transition of Li2CO3 is changed into liquid. And the material has no leakage during use. The thermal performance test also shows that the insulation performance of the material has obvious advantages in the short term application.


2014 ◽  
Vol 564 ◽  
pp. 315-320 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Mahmoud Tahat

The impact of the thermal conductivity (k-value) change of polystyrene insulation material in building envelope due to changes in temperature on the thermal and energy performance of a typical residential building under hot climate is investigated. Indeed, the thermal and energy performance of buildings depends on the thermal characteristics of the building envelope, and particularly on the thermal resistance of the insulation material used. The thermal insulation material which is determined by its thermal conductivity, which describes the ability of heat to flow cross the material in presence of a gradient of temperature, is the main key to assess the performance of the thermal insulation material. When performing the energy analysis or calculating the cooling load for buildings, we use published values of thermal conductivity of insulation materials, which are normally evaluated at 24°C according to the ASTM standards. In reality, thermal insulation in building is exposed to significant and continuous temperature variations, due essentially to the change of outdoor air temperature and solar radiation. Many types of insulation materials are produced and used in Oman, but not enough information is available to evaluate their performance under the prevailing climatic condition. The main objective of this study is to investigate the relationship between the temperature and thermal conductivity of various densities of polystyrene, which is widely used as building insulation material in Oman. Moreover, the impact of thermal conductivity variation with temperature on the envelope-induced cooling load for a simple building model is discussed. This work will serve as a platform to investigate the effect of the operating temperature on thermal conductivity of other building material insulations, and leads to more accurate assessment of the thermal and energy performance of buildings in Oman.


2016 ◽  
Vol 678 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Kono ◽  
Yutaka Goto ◽  
York Ostermeyer ◽  
Rolf Frischknecht ◽  
Holger Wallbaum

Thermal insulation material is an important component to reduce the environmental impact of buildings through the reduction of energy consumption in the operation phase. However, the material itself has embodied environmental impacts for the value it provides. Eco-efficiency is a method that quantifies relation between the environmental performance and the created value of a product system. This study investigated contributing factors of the eco-efficiency of thermal insulation materials to support decision making of material manufacturers. For the improvement of eco-efficiency, the assessment was made in two scopes: investigating the contributing factors of impact caused at production processes; and thermal performance through thermo-physical properties. For quantifying environmental impacts, cradle-to-grave life cycle assessment (LCA) of each materials were made. The life cycle impact assessment (LCIA) indicators used were ReCiPe H/A and global warming potential (GWP100a). For the assessment of production process, the inventories of the materials were assigned to six categories: heat, chemicals, electricity, transportation, raw materials and wastes. Among the assessed materials, contribution of electricity and heat within the production process was large for foam glass which had the highest potential to improve the eco-efficiency which was by factor 1.72. The analysis on relation between thermo-physical properties and eco-efficiency based on product data of the materials highlighted the importance of density as an indicator upon development and use. Althoughdensity often gains less attention,the finding suggested the effectiveness of improving the efficiency by having lower density without compensating the performance of the materials.


2019 ◽  
Vol 10 (2) ◽  
pp. 78-91
Author(s):  
A. V Bolotin ◽  
S. M Sergeev ◽  
A. A Lunegova ◽  
E. A Kochetkova

Modern technologies are not standing still, and scientists are trying not only to invent new building materials, but also to find non-standard use of various raw materials that were previously considered unsuitable for use. Innovative technologies are actively used for modern construction of buildings, in particular, some types of new materials are used in the construction of various facilities. This is especially true in areas where it is not possible to import or use ordinary building materials for various reasons. Often, when designing a building, developers are wondering whether it is worth making the house warm during construction, and which insulation for the walls of the house is better to choose. This article addresses the question of which insulation for walls is most suitable for construction. The most common are mineral insulation, which are represented on the market today in the form of basalt slabs, fiberglass, etc. They have such advantages as low thermal conductivity, good thermal insulation and vapor permeability. The article presents a table with comparative performance characteristics of a mineral wool stone slab and a fiberglass slab. Stone or basalt wool has several advantages. It is able to withstand significant temperatures and temperature changes, the mats are easy to transport, convenient to install. In our opinion, a serious alternative to basalt in the production of thermal insulation materials is volcanic ash. One of the main features of volcanic ash are its building qualities, such as good thermal insulation and an environmentally friendly composition. Since here we are considering the possibility of producing insulation materials based on volcanic ash, we performed a thermal calculation of the enclosing structures. Also in the tables are the costs of transportation of volcanic ash from the field to the point of the proposed production of insulating material. Volcanic ash can be widely used in countries with high volcanic activity as an inexpensive raw material for the manufacture of building materials. It does not require additional processing and has a number of useful properties.


2020 ◽  
Vol 19 (2) ◽  
pp. 21-26
Author(s):  
Michaela Horváthová ◽  
◽  
Linda Makovická-Osvaldová

The article deals with the selection of four types of insulation material based on the particular criteria. Specifically, it will be a matter of decision among facade insulation materials. We chose four species of the most used thermal insulation materials that are available on the market and are used frequently. The applied method is an analytical multilevel method that allows us to divide the whole problem into hierarchies and then compare two elements together and thus gain the weights of the criteria. Subsequently, we assessed the alternatives. The selected criteria are the price of the material, the thermal coefficient conductivity, flammability class and ignition time of the sample. The method is verified in the software BPMSG AHP priority calculator.


2022 ◽  
Vol 906 ◽  
pp. 99-106
Author(s):  
Siranush Egnatosyan ◽  
David Hakobyan ◽  
Spartak Sargsyan

The use of thermal insulation materials to reduce the heating and cooling demand of the building in order to provide energy efficiency is the main solution. But there is a wide range of these products on the market and, therefore, the choice and application of these materials is a rather difficult task, since many factors must be taken into account, such as environmental safety, cost, durability, climatic conditions, application technology, etc. Basically, comfort microclimate systems are designed based on normative standards, where the thickness of the thermal insulation material is selected depending on the required heat transfer resistance. These values are calculated taking into account climate conditions, that is the duration of the heating period, as well as taking into account sanitary and hygienic requirements. This article discusses the thermal performance of building materials, and also provides a comparative analysis of the use of thermal insulation materials depending on climatic factors and on the system providing comfort microclimate. Based on the calculations by mathematical modeling and optimization, it is advisable to choose the thickness of the thermal insulation, taking into account the capital and operating costs of the comfort microclimate systems. Comparing the optimization data with the normative one, the energy efficiency of the building increases by 50-70% when applying the optimal thickness of the thermal insulation layer, and when the thermal insulation layer is increased, the thermal performance of the enclosing structures has improved by 30%, which contributes to energy saving.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 26 ◽  
Author(s):  
Yeou-Fong Li ◽  
Wai-Keong Sio ◽  
Ying-Kuan Tsai

In this paper, a compressive peak strength model for CFRP-confined thermal insulation materials under elevated temperature was proposed. The thermal insulation material was made by Portland cement with different portions of perlite. The compressive strengths of four different perlite ratios in weight, such as 0%, 10%, 20%, and 30% of thermal insulation materials, confined by one-layer, two-layer, and three-layer carbon fiber-reinforced polymer (CFRP) composite materials, were obtained. The test results indicated that the specimen’s compressive strength decreased with an increase in the amount of perlite replacement and increased with an increase in the number of CFRP wrapping layers. Based on the test results, a theoretical compressive peak strength model with some parameters was proposed. In the meantime, the compressive strengths of the above four different perlite ratios of thermal insulation materials under elevated temperature, such as ambient temperature, 100 °C, 150 °C, 200 °C, 250 °C, and 300 °C, were obtained. For compression tests of specimens with a fixed amount of perlite, the test results indicated that the specimen’s compressive strength decreased with an increase in temperature, highlighting a thermal softening phenomenon. Based on the test results, a compressive peak strength model with a thermal softening parameter was proposed to predict the peak strength under elevated temperature. Finally, a compressive peak strength model for thermal insulation material with CFRP confinement under different elevated temperature was derived, and it achieved acceptable results in comparison to the experimental results.


2012 ◽  
Vol 580 ◽  
pp. 489-492
Author(s):  
Qin Fei Sun ◽  
Xue Wang

The analysis on thermal insulation material of new functional material presented its application on clothing, clarified its superior characteristic on clothing is more and more popular with the development of science and technology, promoted people developing new functional material.


Sign in / Sign up

Export Citation Format

Share Document