scholarly journals Trace Scandium addition on the strength and thermal stability of TiB2 particles reinforced Al-4.5 Cu composites

2021 ◽  
Vol 2133 (1) ◽  
pp. 012018
Author(s):  
Yunliang Zhang ◽  
Wentao Yu ◽  
Xinliang Wang ◽  
Yanqing Xue

Abstract Strategies employed for developing ultrahigh strength and scalable ductile particles reinforced aluminium-copper matrix composites (AMCs) are highly desirable and grandly challenging. In the present paper, the Scandium (Sc) micro-alloying TiB2 particles reinforced Al-4.5 Cu composites were successfully fabricated by the optimized salt-metal reaction method. The observed microstructures displayed that Sc addition could remarkably ameliorate the dispersion of TiB2 particles, enlarge equiaxed α-Al grain zone and refine the grains on the basis of TiB2 heterogeneous nucleation. In particular, for the 0.4 wt.% Sc microalloyed 5%TiB2/Al-4.5Cu composites, more than a 20 %, 87 %, and 118 % increase in the ultimate tensile strength (UTS), fracture strain elongation (%) and microhardness (HV), respectively were found with respect to the 3 %TiB2/Al-4.5Cu composites at room temperature (298K). The improved mechanical properties of strength-ductility synergy were mainly thanks to the homogeneous distribution of TiB2 particles and modification of Al2Cu phase. Moreover, proper Sc also enhanced the elevated-temperature mechanical properties of the composites with the aid of the accelerated precipitation of θ′ phase and much lower coarsens rate.

2021 ◽  
Vol 11 ◽  
pp. 1469-1479 ◽  
Author(s):  
Xiuhua Guo ◽  
Yubo Yang ◽  
Kexing Song ◽  
Li Shaolin ◽  
Feng Jiang ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 619-627 ◽  
Author(s):  
Shaolin Li ◽  
Xiuhua Guo ◽  
Shengli Zhang ◽  
Jiang Feng ◽  
Kexing Song ◽  
...  

AbstractArc erosion behaviors of TiB2/Cu composites with single-scale and dual-scale TiB2 particles fabricated by powder metallurgy were studied. It was revealed that the dual-scale TiB2/Cu composites had fewer structure defects compared with the single-scale TiB2/Cu composites, and TiB2 particles with different size were uniformly distributed in the copper matrix. When the ratio of 2 μm over 50 μm TiB2 particles is 1:2, the density of TiB2/Cu composite is 98.5% and shows best mechanical and thermal properties. The arc duration and energy of TiB2/Cu composites increase with the increase of electric current in contact material testing. Compared with the single-scale TiB2/Cu composites, the arc erosion of dual-scale TiB2/Cu composite with 2 μm+50 μm (1:2) TiB2 was slighter. The anode bulge area and cathode erosion pit of dual-scale TiB2/Cu composite was smaller. The dual-scale TiB2 particles optimize the microstructure and thermal stability of the composite, which is conducive to alleviating arc erosion. The synergistic effect of different sized TiB2 particles in the matrix improved the arc erosion resistance of TiB2/Cu composite during arcing.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341025 ◽  
Author(s):  
YU HONG ◽  
XIAOLI CHEN ◽  
WENFANG WANG ◽  
YUCHENG WU

Copper-matrix composites reinforced with SiC particles are prepared by mechanical alloying. The microstructure characteristics, relative density, hardness, tensile strength, electrical conductivity, thermal conductivity and wear properties of the composites are investigated in this paper. The results indicate that the relative density, macro-hardness and mechanical properties of composites are improved by modifying the surface of SiC particles with Cu and Ni . The electrical conductivity and thermal conductivity of composites, however, are not obviously improved. For a given volume fraction of SiC , the Cu / SiC ( Ni ) has higher mechanical properties than Cu / SiC ( Cu ). The wear resistance of the composites are improved by the addition of SiC . The composites with optimized interface have lower wear rate.


2010 ◽  
Vol 150-151 ◽  
pp. 144-149
Author(s):  
Hong Wei Xing ◽  
Jin Song Zhang ◽  
Xiao Ming Cao

Copper matrix composites reinforced with 3D-SiC network (15v% and 20v% SiC) were fabricated by squeezing copper alloy into 3D-SiC network preforms. The thermo-physical properties of the copper matrix composites were investigated. The specific heat capacities of the composites were about 0.39~0.50 J•g-1•K-1. The coefficients of thermal expansion (CTEs) of the composites were found to be lower than 6.9×10-6 -1 at Room Temperature. The composites exhibited high thermal stability for 3D-SiC network advent. The thermal conductivity of the composites was in the range of 50~80W•m−1•K−1. The thermo-physical properties of Cu matrix composites had a great relationship with the structures of 3D-SiC network preforms. The thermal conductivity of the composites decreased with an increase in the volume fraction of SiC or the structures of the limbs changing compacted, but the CTEs were not completely according this rule.


2021 ◽  
Vol 171 ◽  
pp. 110812
Author(s):  
C. Salvo ◽  
E. Chicardi ◽  
J. Hernández-Saz ◽  
C. Aguilar ◽  
P. Gnanaprakasam ◽  
...  

2011 ◽  
Vol 20 (4) ◽  
pp. 096369351102000 ◽  
Author(s):  
Recep Çalin ◽  
Pul Muharrem ◽  
Ramazan Çitak ◽  
Ulvi Şeker

In this study, Al- MgO metal matrix composites (MMC) were produced with 5 %, 10 % and 15 % reinforcement- volume (R-V) ratios by the melt stirring method. In the production of composites 99.5 % pure Al was used as the matrix and MgO powders with the particle size of −105 μm were used as the reinforcement. For every R-V ratio; stirring was made at 500 rev/min at 750°C liquid matrix temperature for 4 minutes and the samples were cooled under normal atmosphere. Then hardness and fracture strengths of the samples were determined and their micro structures were evaluated by using Scanning Electron Microscope (SEM). In general, it was observed that the reinforcement exhibited a homogeneous distribution in horizontal direction. But there is a slight inhomogeneity in vertical direction. It was determined that the increase in the R-V ratio increased the porosity and also the hardness. As for the fracture strength, the highest strength was obtained with the 5 % MgO reinforced sample.


2017 ◽  
Vol 898 ◽  
pp. 476-479
Author(s):  
Jin Xia Yang ◽  
Yuan Sun ◽  
Dong Ling Zhou

The effects of HIP process on microstructure and mechanical properties of IN792 cast superalloy were studied. The results showed that HIP process produced more uniform and finer cubic γ′ than standard heat treatment. The difference of the mechanical properties should be caused by the microstructure changes. HIP process leads the homogeneous distribution of γ′ at dendritic arm and interdendritic area, and improved UTS and YS of tested alloy at 550°C. However, it played no role in increasing UTS and YS at room temperature and stress-rupture lives of 760°C/662MPa and decreased stress-rupture lives of 982°C/186MPa.


2014 ◽  
Vol 775-776 ◽  
pp. 284-289 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Wellington Pereira Inácio ◽  
Artur Camposo Pereira ◽  
Michel Picanço Oliveira

The tensile properties of DGEBA/TETA epoxy matrix composites reinforced with different amounts of sisal fibers were evaluated. Composites reinforce with up to 30% in volume of long, continuous and aligned sisal fibers were room temperature tested in an Instron machine. The fracture was analyzed by SEM. The results showed significant changes in the mechanical properties with the amount of sisal fibers. These mechanical properties were compared with other bend-tested composites results. The fracture analysis revealed a weak fiber/matrix interface, which could be responsible for the performance of some properties.


Sign in / Sign up

Export Citation Format

Share Document