scholarly journals Research on Shrinkage Inhibition Technology of C50 Steel Shell Immersed Tube Self-Compacting Concrete

2022 ◽  
Vol 2160 (1) ◽  
pp. 012020
Author(s):  
Xudong Wu ◽  
Yingjun Peng ◽  
Tao He ◽  
Putao Song

Abstract The effects of shrinkage reducing agent and expansion agent on workability, strength and shrinkage of C50 self-compacting concrete with steel-shell immersed tube were studied. It is found that the expansive agent can increase the 28d compressive strength of concrete and restrain the shrinkage of concrete, but it can reduce the mixture property of concrete, and the shrinkage reducing agent can reduce the 28d compressive strength of concrete, but it can obviously restrain the shrinkage of concrete and improve the performance of concrete mixture. On the basis that the performance of concrete mixture meets the technical index, when the dosage of shrinkage reducing agent is 1.5%, the performance of concrete mixture is the best, and the drying shrinkage rate of 28d is the smallest. At this time, the properties of C50 steel-shell sunk pipe self-compacting concrete are as follows: slump flow 720mm, T50 2s, pour-down time 2s, v-shaped funnel passing time 6s, 28d compressive strength 59.6 MPa, 28d drying shrinkage 135×10−6.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Su Anshuang ◽  
Qin Ling ◽  
Zhang Shoujie ◽  
Zhang Jiayang ◽  
Li Zhaoyu

This paper investigated the influences of shrinkage reducing agent and expansive admixture on autogenous and drying shrinkage of ultrahigh performance concrete (UHPC) containing antifoaming admixture. The shrinkage reducing agent was used at dosage of 0.5%, 1%, and 2% and the expansive admixture was used at dosage of 2% to 4% by mass of cementitious material. The results show that the air content of UHPC increases with the higher addition of shrinkage reducing agent and expansive admixtures. However, the fluidity, compressive strength, and shrinkage of UHPC exhibit a declining tendency. The usage of expansive agent at dosage of 4% significantly reduces the shrinkage of UHPC. The 7-day autogenous shrinkage was decreased by 16.0% and 28-day drying shrinkage was decreased by 29.5%, respectively. Shrinkage reducing agent at dosage of 2% reduced the 7-day autogenous shrinkage by 44.3% and 28-day drying shrinkage by 50.2%. Compared with expansive admixture, shrinkage reducing agent exhibits more efficient shrinkage reduction effect on UHPC.


2011 ◽  
Vol 250-253 ◽  
pp. 866-869 ◽  
Author(s):  
Hong Zhu Quan

To utilize the recycled powder as concrete additives, self-compaceing concerte with recycled powder, granulated blast-furnace slag and granulated limestone were tested for slump-flow, compressive strength, modulus of elasticity and drying shrinkage. Reduction in superplasticizing effect of high-range water reducer was found for concrete with recycled powder. Compressive strength of concrete with recycled powder were the same as those with granulated limestone, and lower than those with granulated blast-furnace slag. Concrete with recycled powder showed lower elastic modulus and higher drying shrinkage than those with granulated blast-furnace slag and granulated limestone. The addition of granulated blast-furnace slag together with recycled powder to self-compacting concrete improved superplasticizing effect of high-range water reducer and properties of concrete.


2018 ◽  
Vol 26 (5) ◽  
pp. 1-8
Author(s):  
Qosai Sahib Radi Marshdi ◽  
Ahlam Hamid Jasim ◽  
Haider Abass Obeed

The principle of using expansive agents has been recommended to manufacture shrinkage compensating concrete provided that an adequate wet curing is carried out. On the other hand, shrinkage-reducing admixture (SRA) in the concrete mixes, has been more recently suggested to reduce the risk of cracking in concrete structures caused by drying shrinkage. This paper is devoted to the study of the influence of complex modifier in the form of superplasticizer, shrinkage reducing admixture and expansive agent CaO- MgO-based on the fresh properties, hardening processand restrained shrinkage of Self-Compacting-Shrinkage-Compensating Concretes. The combined addition of shrinkage-reducing admixture with expansive agent has been found to be successful in producing shrinkage-compensating concrete. It should be noted also that the shrinkage reducing admixture slightly improve the workabilityof the fresh concrete mixtures but, it slightly reduces the early compressive strength of concrete.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Hyung Sub Han ◽  
Jong Kyu Kim ◽  
Yong Wook Jung

To develop a high-performance shrinkage reducing agent, this study investigated several shrinkage reducing materials and supplements for those materials. Fluidity and air content were satisfactory for the various shrinkage reducing materials. The decrease in viscosity was the lowest for glycol-based materials. The decrease in drying shrinkage was most prominent for mixtures containing glycol-based materials. In particular, mixtures containing G2 achieved a 40% decrease in the amount of drying shrinkage. Most shrinkage reducing materials had weaker level of compressive strength than that of the plain mixture. When 3% triethanolamine was used for early strength improvement, the strength was enhanced by 158% compared to that of the plain mixture on day 1; enhancement values were 135% on day 7 and 113% on day 28. To assess the performance of the developed high-performance shrinkage reducing agent and to determine the optimal amount, 2.0% shrinkage reducing agent was set as 40% of the value of the plain mixture. While the effect was more prominent at higher amounts, to prevent deterioration of the compressive strength and the other physical properties, the recommended amount is less than 2.0%.


2018 ◽  
Vol 203 ◽  
pp. 06022
Author(s):  
Salmia Beddu ◽  
Daud Mohamad ◽  
Fadzli Mohamed Nazri ◽  
Siti Nabihah Sadon ◽  
Mohamed Galal Elshawesh

This study investigates the self-curing concrete using baby polymer diapers as substitute method of curing process in order to improve mechanical and physical properties of concrete. Three different proportion of baby polymer diapers which are 1%, 3% and 5% were mix with concrete. Slump, compressive strength and drying shrinkage test were performed in order to study the workability, strength and durability of the concrete. All concrete were tested for 1, 3, 7, 14, and 28 days for drying shrinkage test. Meanwhile, all concrete were test at 3, 7 and 28 days for compressive strength test. Compressive strength of concrete containing 5% baby polymer diapers show the highest strength at 28 days compared to others percentage. Thus, it indicates that application of baby polymer diaper as self-cure agent can improve the concrete performances.


2017 ◽  
Vol 67 (325) ◽  
pp. 111 ◽  
Author(s):  
D. Burgos ◽  
A. Guzmán ◽  
K. M.A. Hossain ◽  
S. Delvasto

This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.


2020 ◽  
Vol 2 (1) ◽  
pp. 31-57
Author(s):  
Ni Ketut Sri Astati Sukawati

Concrete with various variants is a basic requirement in building a building. The concrete mixture is diverse depending on the planning made beforehand. The cement mixture is usually in the form of a mixture of artificial stone, cement, water and fine aggregates and coarse aggregates. Aggregates (fine aggregates and coarse aggregates) function as fillers in concrete mixtures. (Subakti, A., 1994). However, in building construction, additives are often added, but there is still a sense of uncertainty at the time of dismantling the mold and the reference before the concrete reaches sufficient strength to carry its own weight and the carrying loads acting on it. To overcome the time of carrying out work related to concrete, it is necessary to find an alternative solution, for example by looking for alternative ingredients of concrete mixture on the basis of consideration without reducing the quality of the concrete. From the results of previous studies it was stated that due to the partial replacement of cement with Fly Ash, the strength of the pressure and tensile strength of the concrete had increased (Budhi Saputro, A., 2008). Based on the description above, the author seeks to examine how the compressive strength of concrete characteristics that occur by adding additives Addition H.E in the concrete mixture and is there any additive Additon H.E effect on the increase in the compressive strength characteristic of the concrete. From the results of the study, it was found that the compressive strength of the concrete with the addition of additives HE was that after the compressive strength test of the concrete cube was carried out and the analysis of concrete compressive strength of 10 specimens, in each experiment a cube specimen was made with the addition of additons. HE with a dose of 80 cc, 120 cc, and 200 cc can accelerate and increase the compressive strength of concrete characteristics.


Jurnal Tekno ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 11-20
Author(s):  
Ahmad Junaidi ◽  
R Dewo Hiraliyamaesa Hariyanto

Perumpung (Eulalia japonica) is a wild plant that usually grows on the banks of river. The locals consider this plant as a waste/pest, but the authors are interested in researching perumpung because they are similar to bamboo, sugarcane and other fibrous plants. In this study, the authors aims to compare the compressive strength of normal concrete with the compressive strength of concrete added with Perumpung ash at 28-days-old K-300. The study used a cube-shaped test object (15 x 15 x 15 cm) with 6 samples for each condition. The total number of test objects is 48, which consists of 8 conditions, namely normal conditions and 5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20% addition of perumpung ash by cement weight. The results obtained that the compressive strength of 28-days-old concrete under normal conditions was 316,060 kg/cm2 and the addition of 5% ash was 331.583 kg/cm2, 7.5% was 337.181 kg/cm2, 10% was 341.813 kg/cm2, 12 ,5% is 347,045 kg/cm2, 15% is 353,889 kg/cm2, 17.5% is 311,160 kg/cm2 and 20% is 298.44 kg/cm2. From the results above it can be concluded that the addition of 15% Perumpung Ash to the concrete mixture increases the maximum characteristic concrete compressive strength by 353.889 kg/cm2.


2020 ◽  
Vol 20 (01) ◽  
pp. 61-68
Author(s):  
Siska Apriwelni ◽  
Nugraha Bintang Wirawan

(ID) Penelitian ini membahas pengaruh kuat tekan beton mutu tinggi dengan memanfaatkan limbah fly ash dan limbah kaca. Tujuan dari penelitian ini untuk mengetahui kuat tekan beton pada masing-masing variasi, mengetahui persentase campuran beton untuk menghasilkan kuat tekan maksimum, dan mengetahui apakah fly ash dan serbuk kaca efektif digunakan secara bersamaan sebagai bahan campuran beton. Komposisi fly ash terdiri dari 5 variasi yaitu persentase 0%, 5%, 10%, 15%, dan 20%. Sedangkan untuk komposisi serbuk kaca terdiri dari 2 variasi yaitu persentase 5% dan 10%. Jumlah benda uji 30 buah silinder berukuran diameter 15 cm dan tinggi 30 cm dengan 3 benda uji untuk setiap variasi. Perencanaan campuran beton menggunakan SNI 03-2834-2000 yang dimodifikasi. Pengujian kuat tekan diuji pada umur beton 28 hari. Beton dengan fly ash 0% dan serbuk kaca 10% memiliki kuat tekan paling tinggi dibandingkan dengan beton dengan tambahan fly ash, yaitu 46,77%. Selain itu, dapat disimpulkan bahwa semakin bertambahnya jumlah persentase serbuk kaca yang digunakan menunjukkan bahwa kuat tekan beton semakin bertambah juga. Penambahan fly ash pada campuran beton mempengaruhi kuat tekan beton yang dihasilkan. Pada variasi fly ash 0% memiliki kuat tekan tertinggi baik pada saat campuran serbuk kaca 5%dan 10%. Variasi fly ash 15% adalah kondisi optimum campuran beton dengan kuat tekan beton yaitu 43,31 Mpa. Kedua limbah ini dapat dikombinasikan dan dimanfaatkan dengan baik dan digunakan dalam pembuatan beton mutu tinggi. (EN) This study discusses the effect of high quality concrete by utilizing fly ash and glass waste. The purpose of this study is to determine the compressive strength of concrete in each variation, to determine the contribution of concrete to produce compressive strength, and to find out that fly ash and glass powder are effectively used in full as a concrete admixture. Fly ash composition consists of 5 variations, namely the percentage of 0%, 5%, 10%, 15%, and 20%. While for the composition of glass powder consists of 2 variations, namely the percentage of 5% and 10%. The number of specimens is 30 cylinders with a diameter of 15 cm and a height of 30 cm with 3 specimens for each variation. Concrete mixture planning using SNI 03-2834-2000 was developed. Compressive strength testing on concrete age 28 days. Concrete with 0% fly ash and 10% glass powder have the highest compressive strength compared to concrete with additional fly ash, which is 46.77%. In addition, it can increase the amount of glass powder addition that is used to show the concrete compressive strength is increasing as well. The addition of fly ash in the concrete mixture has an effect on the compressive strength of the concrete produced. In the variation of 0% fly ash has the highest compressive strength when the glass powder mixture of 5% and 10%. The 15% fly ash variation is the optimal concrete mixture with compressive strength of 43.31 MPa. These two wastes can be combined and utilized properly and are used in making high quality concrete.  


2010 ◽  
Vol 152-153 ◽  
pp. 1176-1179 ◽  
Author(s):  
Feng Lan Li ◽  
Qian Zhu

To improve the application of the new proto-machine-made sand in structural engineering, tests are carried out to study the drying shrinkage of concrete affected by stone powder in proto- machine-made sand. The target cubic compressive strength of concrete is 55 MPa, the main factor varied in mix proportion of concrete is the contents of stone powder by mass of proto-machine-made sand from 3 % to 16 %. The drying shrinkage strains of concrete are measured by the standard method at the ages of 1 d, 3 d, 7 d, 14 d, 28 d, 60 d, 90 d, 120 d, 150 d and 180 d. Based on test results, the drying shrinkage of concrete affected by the contents of stone powder in proto-machine-made sand is analyzed and compared with that of similar test of concrete with traditional machine-made sand, which shows that there is the optimum content of stone powder resulting in the lower drying shrinkage of concrete. The formula for predicting drying shrinkage strain of concrete is proposed.


Sign in / Sign up

Export Citation Format

Share Document