scholarly journals Influence of Torsional Excitation on Dynamic Responses of Rotors with a Breathing Slant Crack

2017 ◽  
Vol 842 ◽  
pp. 012015
Author(s):  
Zhiwen Lu ◽  
Chunrong Hua ◽  
Dawei Dong ◽  
Bing Yan ◽  
Kang Fan
Author(s):  
Chao Liu ◽  
Dongxiang Jiang

Crack failures in rotating machinery can result in catastrophic accidents, and they are are difficult to detect online. Condition monitoring is widely applied in field to detect changes of vibration, and form diagnostic features. However, effective features in vibration of the cracked rotor need more tests, especially validating the features with experiments. This work carried out an experimental study on cracked rotors in laboratory. The experiments are as following: (I) vibration of the rotor in normal condition is firstly tested, where lateral vibration and torsional vibration are measured; (II) torsional excitation is exerted on driven end of rotor system, and vibration characteristics of the rotor are tested; (III) cracked rotors are tested with transverse and slant cracks, respectively. With the measured signals, comparisons of vibrations in normal rotor and cracked rotors are carried out. The results show that, the transverse crack introduces more significant changes in 1X frequency and coupled frequency, while the slant crack employs larger changes in 2X frequency. And variation of phases of 1X frequency is presented. Also, the crack plays an impact on the torsional responses.


Author(s):  
Xiangmin Zhang ◽  
Changping Chen ◽  
Liming Dai

Considering a rotor system with a slant crack, and using an equivalent line-spring model to simulate the slant crack of the rotor, the flexibility model of the slant-cracked rotor is derived. Then considered the geometric non-linearity and based on the Lagrange equations, the non-linear dimensionless differential equations of motion for the slant-cracked rotor are obtained. Further the non-linear dynamic responses of the single rotor system with a slant crack are discussed by the Galerkin method and the harmonic balance method. It’s detailedly studied that the angle, the depth and the position of the slant crack on the rotor all affect on the non-linear dynamic responses of the rotor system, and the conclusion is very significant to the design of the rotor system in the practical reference aspect.


2012 ◽  
Vol 226-228 ◽  
pp. 665-671 ◽  
Author(s):  
Yuan Di ◽  
Chang Li Liu ◽  
Qi Di Zhang ◽  
Wei Cheng ◽  
Shao Ping Zhou

Dynamic behaviors of a rotor with a transverse fatigue surface crack have been studied a lot in the past. In the present study the rotor containing a transverse crack with semi-elliptical fronted edge is considered since the crack grows in an elliptical path when the rotor is subjected to long time cyclic loads through fatigue experiments and realistic cases. Using the finite element method, the stiffness of the shaft with the semi-elliptical fronted transverse crack is calculated. Then, the vibration responses and the coupling mechanism of bending and torsional vibrations of the rotor with and without torsional excitation are analyzed. The result shows that there are slight differences between the dynamic responses of the straight fronted cracked rotor and the semi-elliptical fronted rotor in common frequency fields and high frequency fields. The similar contrast is obtained when the rotor system is applied by torsional excitation.


2019 ◽  
Vol 476 (20) ◽  
pp. 2981-3018 ◽  
Author(s):  
Petar H. Lambrev ◽  
Parveen Akhtar

Abstract The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 356-359 ◽  
Author(s):  
M. Sekine ◽  
M. Ogawa ◽  
T. Togawa ◽  
Y. Fukui ◽  
T. Tamura

Abstract:In this study we have attempted to classify the acceleration signal, while walking both at horizontal level, and upstairs and downstairs, using wavelet analysis. The acceleration signal close to the body’s center of gravity was measured while the subjects walked in a corridor and up and down a stairway. The data for four steps were analyzed and the Daubecies 3 wavelet transform was applied to the sequential data. The variables to be discriminated were the waveforms related to levels -4 and -5. The sum of the square values at each step was compared at levels -4 and -5. Downstairs walking could be discriminated from other types of walking, showing the largest value for level -5. Walking at horizontal level was compared with upstairs walking for level -4. It was possible to discriminate the continuous dynamic responses to walking by the wavelet transform.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


2011 ◽  
Vol 250-253 ◽  
pp. 3822-3826 ◽  
Author(s):  
Xian Mai Chen ◽  
Xia Xin Tao ◽  
Gao Hang Cui ◽  
Fu Tong Wang

The general track spectrum of Chinese main railway lines (ChinaRLS) and the track spectrum of American railway lines (AmericaRLS) are compared in terms of character of frequency domain, statistical property of time domain samples and dynamic performance. That the wavelength range of the ChinaRLS, which is characterized by the three levels according to the class of railway line, is less than AmericaRLS at common wave band of 1~50m is calculated. Simultaneously, the mean square values of two kinds of track spectra are provided at the detrimental wave bands of 5~10m, 10~20m, and so on. The time-histories of ChinaRLS and AmericaRLS are simulated according to the trigonometric method, and the digital statistical nature of simulated time samples is analyzed. With inputting the two kinds of time-histories into the vehicle-railway system, the comparative analysis of the two kinds of dynamic performances for ChinaRLS and AmericaRLS is done in terms of car body acceleration, rate of wheel load reduction, wheel/rail force, and the dynamic responses of track structure. The result shows that ChinaRLS can characterize the feature of the Chinese track irregularity better than AmericaRLS, the track irregularity with the ChinaRLS of 200km/h is superior to the AmericaRLS, and the track irregularity with the ChinaRLS of 160km/h corresponds to with the sixth of AmericaRLS.


Sign in / Sign up

Export Citation Format

Share Document