scholarly journals Development, construction and tests of the Mu2e electromagnetic calorimeter mechanical structures

2022 ◽  
Vol 17 (01) ◽  
pp. C01007
Author(s):  
N. Atanov ◽  
V. Baranov ◽  
L. Borrel ◽  
C. Bloise ◽  
J. Budagov ◽  
...  

Abstract The “muon-to-electron conversion” (Mu2e) experiment at Fermilab will search for the charged lepton flavour violating neutrino-less coherent conversion of a muon into an electron in the field of an aluminum nucleus. The observation of this process would be the unambiguous evidence of the existence of physics beyond the standard model. Mu2e detectors comprise a straw-tracker, an electromagnetic calorimeter and an external veto for cosmic rays. In particular, the calorimeter provides excellent electron identification, a fast calorimetric online trigger, and complementary information to aid pattern recognition and track reconstruction. The detector has been designed as a state-of-the-art crystal calorimeter and employs 1348 pure Cesium Iodide (CsI) crystals readout by UV-extended silicon photosensors and fast front-end and digitization electronics. A design consisting of two identical annular matrices (named “disks”) positioned at the relative distance of 70 cm downstream the aluminum target along the muon beamline satisfies the Mu2e physics requirements. The hostile Mu2e operational conditions, in terms of radiation levels (total expected ionizing dose of 12 krad and a neutron fluence of 5 × 1010 n/cm2 @ 1 MeVeq (Si)/y), magnetic field intensity (1 T) and vacuum level (10−4 Torr) have posed tight constraints on scintillating materials, sensors, electronics and on the design of the detector mechanical structures and material choice. The support structure of each 674 crystal matrix is composed of an aluminum hollow ring and parts made of open-cell vacuum-compatible carbon fiber. The photosensors and front-end electronics for the readout of each crystal are inserted in a machined copper holder and make a unique mechanical unit. The resulting 674 mechanical units are supported by a machined plate of vacuum-compatible plastic material. The plate also integrates the cooling system made of a network of copper lines flowing a low temperature radiation-hard fluid and placed in thermal contact with the copper holders to constitute a low resistance thermal bridge. The data acquisition electronics are hosted in aluminum custom crates positioned on the external lateral surface of the disks. The crates also integrate the electronics cooling system as lines running in parallel to the front-end system. In this paper we report on the calorimeter mechanical structure design, the mechanical and thermal simulations that have determined the design technological choices, and the status of component production, quality assurance tests and plans for assembly at Fermilab.

2014 ◽  
Vol 937 ◽  
pp. 74-79 ◽  
Author(s):  
Shu Zhan Bai ◽  
Shuai Guo Lang ◽  
Ke Ping Yuan ◽  
Yang Liu ◽  
Guo Xiang Li

Avoiding the urea deposition in the exhaust stream is one of the basic requirements for SCR system normal application. Unreasonable structure design, machining and installation position all could lead to urea crystallization on the wall of exhaust pipe and the front end surface of the catalyst, in addition, unreasonable control strategy also could deteriorate this phenomenon. The components of the urea depositions are the urea and cyanuric acid analyzed by thermogravimetry - FTIR technology. The integrated injector mounting is designed to alleviate the urea crystallization based on analysis results. The engine test and the vehicle road test are all shown that the optimal structural design and calibration strategies could avoid crystallization and sedimentation effectively in the exhaust system.


Author(s):  
Charles H. O. Lombard ◽  
Daniel N. J. Els ◽  
Jacques Muiyser ◽  
Albert Zapke

South Africa’s coal-fired power stations use super heated steam to drive generator turbines. In arid regions, air-cooled condensers (ACCs) are used to condense the process steam. These ACCs consists of an array of over 200 axial flow fans, each driven by a motor via a reduction gearbox. Distorted fan inlet air flow conditions cause transient blade loading, which results in variations in output shaft bending and torque. A measurement project was conducted where the input and output shaft of such a gearbox were instrumented with strain gauges and wireless bridge amplifiers. Gearbox shaft speed and vibration were also measured. Torsional and bending strains were measured for a variety of operational conditions, where correlations were seen between gearbox loading and wind conditions. The input side experienced no unexpected loads from the motor or changing wind conditions, whereas output shaft loading was influenced by the latter. Digital filters were applied to identify specific bending components, such as the influence of fan hub misalignment and dynamic blade loading. Reverse loading of the gearbox was measured during the fan stop period, and vibration analysis revealed torsional and gearbox vibrations. This investigation documented reliable full scale ACC gearbox loads.


Author(s):  
P. Branchini ◽  
A. Aloisio ◽  
A. Budano ◽  
G. Corradi ◽  
M. Galasso ◽  
...  

Author(s):  
Osamu Suzuki ◽  
Atsuo Nishihara

A novel electronics cooling system that uses water heat pipes under an ambient temperature range from −30°C to 40°C has been developed. The system consists of several water heat pipes, air-cooled fins, and a metal block. The heat pipes are separated into two groups according to the thermal resistance of their fins. One set of heat pipes, which have fins with higher thermal resistance, operates under an ambient temperature range from −30°C to 40°C. The other set, which have lower resistance, operates from 0°C to 40°C. A prediction model based on the frozen-startup limitation of a single heat pipe was first devised and experimentally verified. Then, a prediction model for the whole-system was formulated according to the former model. The whole-system model was used to design a prototype cooling system, and it was confirmed that the prototype has a suitable cooling performance for an environmentally friendly electronics cooling system.


2021 ◽  
Vol 345 ◽  
pp. 00015
Author(s):  
Matěj Jeřábek ◽  
Michal Volf ◽  
Daniel Duda

The article describes a numerical simulation of flow in the cooling system of an electromagnetic calorimeter by analysing the temperature and pressure fields. Two fundamentally different approaches were used to analyse the pressure field - analytical 1D calculation and numerical 3D flow simulation. The article contains a detailed evaluation and description of individual analyses using the commercial software ANSYS 2020 R1.


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000159-000165
Author(s):  
M. Wilson ◽  
H. Anderson ◽  
J. Fellows ◽  
C. Lewinsohn

Heat dissipation has become a major hurdle for the electronics industry, especially as higher performance integrated circuits are being developed for the power industry. Two of the primary hurdles in dissipating this heat are:The thermal contact resistance between the IC and the cooling device.The ability to effectively spread the heat, such that traditional cooling technologies can be effective.By selecting ceramic materials that are thermo-mechanically matched (CTE) to IC materials, the proposed heat plate can be directly bonded by typical solder or braze techniques to the back-side of the IC. This eliminates thermal resistances due to contact and thermal interface materials. Within these heat plates, a three dimensional network of gas channels and fluid wicks spread the high-flux heat loads from localized hot spots to the surrounding regions via phase change fluids and mass transport. Like traditional heat pipes, these heat plates operate at nearly uniform temperature due to the phase change. The internal networks provide for multidimensional heat and mass flow, increasing their dissipating capability. By using matched ceramic materials, and the inclusion of a heat plate, these primary hurdles for heat dissipation can be mitigated. The performance of prototypical planar heat plates will be presented.


2016 ◽  
Vol 24 (7) ◽  
pp. 1640-1646 ◽  
Author(s):  
李勇军 LI Yong-jun ◽  
张 敏 ZHANG Min ◽  
薛 松 XUE Song ◽  
贾丹丹 JIA Dan-dan ◽  
金利民 JIN Li-min

Author(s):  
E. Blucher ◽  
B. Gittelman ◽  
B.K. Heltsley ◽  
J. Kandaswamy ◽  
R. Kowalewski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document