Fast GPU-based spot extraction for energy-dispersive X-ray Laue diffraction

2014 ◽  
Vol 9 (11) ◽  
pp. T11003-T11003 ◽  
Author(s):  
F. Alghabi ◽  
S. Send ◽  
U. Schipper ◽  
A. Abboud ◽  
N. Pashniak ◽  
...  
Author(s):  
Ali Abboud ◽  
Ali AlHassan ◽  
Benjamin Dönges ◽  
Jean Sebastian Micha ◽  
Robert Hartmann ◽  
...  

2017 ◽  
Vol 50 (3) ◽  
pp. 901-908 ◽  
Author(s):  
A. Abboud ◽  
C. Kirchlechner ◽  
J. Keckes ◽  
T. Conka Nurdan ◽  
S. Send ◽  
...  

The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.


2016 ◽  
Vol 11 (01) ◽  
pp. T01001-T01001 ◽  
Author(s):  
F. Alghabi ◽  
S. Send ◽  
U. Schipper ◽  
A. Abboud ◽  
U. Pietsch ◽  
...  

2019 ◽  
Vol 26 (5) ◽  
pp. 1612-1620
Author(s):  
Mohammad Shokr ◽  
Amir Tosson ◽  
Ali Abboud ◽  
Alaa Algashi ◽  
Dieter Schlosser ◽  
...  

The lattice parameters and unit-cell orientation of an SrLaAlO4 crystal have been determined by means of energy-dispersive X-ray Laue diffraction (EDLD) using a pnCCD detector coupled to a columnar structure CsI(Tl) scintillator in the energy range between 40 and 130 keV. By exploiting the high quantum efficiency (QE) achieved by this combined detection system for hard X-rays, a large number of Bragg reflections could be recorded by the relatively small detector area, allowing accurate and fast determination of the lattice parameters and the moduli of the structure factors. The experiment was performed on the energy-dispersive diffraction (EDDI) beamline at the BESSY II synchrotron using a pnCCD detector with 128 × 128 pixels. Since the energies and positions of the Laue peaks can be recorded simultaneously by the pnCCD system, the tetragonal structure of the investigated specimen was determined without any prior information. The unit-cell parameters and the angles between the lattice vectors were evaluated with an accuracy of better than 0.7%, while the structure-factor moduli of the reflections were determined with a mean deviation of 2.5% relative to the theoretical values.


2009 ◽  
Vol 42 (6) ◽  
pp. 1139-1146 ◽  
Author(s):  
Sebastian Send ◽  
Marc von Kozierowski ◽  
Tobias Panzner ◽  
Semen Gorfman ◽  
Kivanc Nurdan ◽  
...  

A frame-store pn-junction CCD detector was applied to the energy-dispersive X-ray Laue diffraction study of a γ-LiAlO2crystal with white synchrotron radiation. Exploiting the simultaneous spatial and energy resolution of the detector the crystallographic unit cell of γ-LiAlO2could be determined without anya prioriinformation about the sample. The potential for application in X-ray structure analysis is tested by comparing experimental structure factors taken under a single exposure with those calculated from the known crystal structure. After correcting the measured spot intensities by angular and energy-dependent parameters, the agreement between experimental and theoretical kinematical structure factors is better than 10%.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
J. Bentley ◽  
E. A. Kenik

Instruments combining a 100 kV transmission electron microscope (TEM) with scanning transmission (STEM), secondary electron (SEM) and x-ray energy dispersive spectrometer (EDS) attachments to give analytical capabilities are becoming increasingly available and useful. Some typical applications in the field of materials science which make use of the small probe size and thin specimen geometry are the chemical analysis of small precipitates contained within a thin foil and the measurement of chemical concentration profiles near microstructural features such as grain boundaries, point defect clusters, dislocations, or precipitates. Quantitative x-ray analysis of bulk samples using EDS on a conventional SEM is reasonably well established, but much less work has been performed on thin metal foils using the higher accelerating voltages available in TEM based instruments.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Author(s):  
Michael E. Rock ◽  
Vern Kennedy ◽  
Bhaskar Deodhar ◽  
Thomas G. Stoebe

Cellophane is a composite polymer material, made up of regenerated cellulose (usually derived from wood pulp) which has been chemically transformed into "viscose", then formed into a (1 mil thickness) transparent sheet through an extrusion process. Although primarily produced for the food industry, cellophane's use as a separator material in the silver-zinc secondary battery system has proved to be another important market. We examined 14 samples from five producers of cellophane, which are being evaluated as the separator material for a silver/zinc alkaline battery system in an autonomous underwater target vehicle. Our intent was to identify structural and/or chemical differences between samples which could be related to the functional differences seen in the lifetimes of these various battery separators. The unused cellophane samples were examined by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Cellophane samples were cross sectioned (125-150 nm) using a diamond knife on a RMC MT-6000 ultramicrotome. Sections were examined in a Philips 430-T TEM at 200 kV. Analysis included morphological characterization, and EDS (for chemical composition). EDS was performed using an EDAX windowless detector.


Sign in / Sign up

Export Citation Format

Share Document