Characterization of milkweed-seed gust response

2021 ◽  
Vol 16 (6) ◽  
pp. 066017
Author(s):  
Joshua N Galler ◽  
David E Rival

Abstract Inspired by the reproductive success of plant species that employ bristled seeds for wind-borne dispersal, this study investigates the gust response of milkweed seeds, selected for their near-spherical shape. Gust-response experiments are performed to determine whether these porous bodies offer unique aerodynamic properties. Optical motion-tracking and particle image velocimetry (PIV) are used to characterize the dynamics of milkweed seed samples as they freely respond to a flow perturbation produced in an unsteady, gust wind tunnel. The observed seed acceleration ratio was found to agree with that of similar-sized soap bubbles as well as theoretical predictions, suggesting that aerodynamic performance does not degrade with porosity. Observations of high-velocity and high-vorticity fluid deflected around the body, obtained via time-resolved PIV measurements, suggest that there is minimal flow through the porous sphere. Therefore, despite the seed’s porosity, the formation of a region of fluid shear, accompanied by vorticity roll-up around the body and in its wake, is not suppressed, as would normally be expected for porous bodies. Thus, the seeds achieve instantaneous drag exceeding that of a solid sphere (e.g. bubble) over the first eight convective times of the perturbation. Therefore, while the steady-state drag produced by porous bodies is typically lower than that of a solid counterpart, an enhanced drag response is generated during the initial flow acceleration period.

If in a gravitating body there occurs a displacement which involves alteration of density, there must be a tendency for the material to move towards the places where the density is increased, and away from the places where the density is diminished. The effect of this tendency, if it were not held in check, would be to accentuate local alterations of density. In any body the tendency is partially held in check by the elasticity of the body, and, in particular, by the elastic resistance which the body offers to compression. If this resistance is sufficiently great, the body is stable, in spite of the tendency to instability which arises from gravitation. It is important to determine the conditions of stability for bodies of various forms and constitutions, with various distributions of density. The problem of the stability of spherically symmetrical configurations of a quantity of gravitating gas has been investigated by J. H. Jeans, and he has drawn from his investigations some interesting conclusions in regard to the course of evolution of stellar and planetary systems. In a subsequent memoir he proceeded to investigate a similar problem in regard to gravitating bodies of a more coherent character. A gravitating solid body, such as a planet may be conceived to he, might exist in a spherical shape with a spherically symmetrical distribution of density. In the absence of gravitation there could he no question of instability. The effect of any local condensation would be to set up vibrations, and the frequency of the vibration of any spherical harmonic type would depend upon the elasticity of the material. If the resistance of the material to compression is sufficiently high the stability persists in spite of gravitation. There are thus two competing agencies: gravitation, tending to instability, and the elasticity of the material, tending to stability. In a general way it is clear that, as the elasticity diminishes, the frequency of vibration of any type also diminishes; and, if the frequency can vanish for sufficiently small elasticity, the planetary body possessing such elasticity cannot continue to exist in the spherically symmetrical configuration. The problem is to determine the conditions as regards elasticity in which the instability occurs. A grave difficulty presents itself at the outset. In the equilibrium configuration the gravitating planet is in a state of stress; and, in a body of such dimensions as the Earth, this stress is so great that the total stress existing in the body when it vibrates cannot be calculated by the ordinary methods of the theory of elasticity. In that theory it is ordinarily assumed that the body under investigation is in a state so little removed from one of zero stress that the strain, measured from this state as a zero of reckoning, is proportional to the stress existing at any instant. In order that this assumption may he valid, it is necessary that the strain which is calculated by means of it should be so small that its square may be neglected. Now if we apply the equations of the ordinary theory to the problem of a solid sphere strained by its own gravitation, and if we take the sphere to he of the same size and mass as the Earth, and the material of which it is composed to possess moduluses of elasticity as great as those of ordinary steel, we find that the strains may be as great as and thus the strains are much too great for the assumption to he valid. The initial stress existing in the gravitating planet, the stress by which the self-attraction of the body is equilibrated, is much too great to perm it of the application of the ordinary theory. The same difficulty presents itself in every problem concerning the elasticity of a gravitating planet, for example, in the problem of tidal deformation or of the stress produced in the interior by the w eight of continents. In these problems the difficulty was turned by Lord Kelvin and Sir G. H. Darwin by taking the modulus of compression to be much greater than that of any known material, in other words, by taking the material to be incompressible. Their object was to determine the degree of rigidity which must be assigned to the Earth , and for that object it is permissible to turn the difficulty in this way. When the problem is that of gravitational instability this artifice cannot be adopted, because the whole question is that of the degree of compressibility which is admissible if the gravitating planet is to be stable in a spherically symmetrical configuration. The artifice adopted by Jeans (1903) consisted in annulling the initial stress by introducing an imagined external field of force to equilibrate the self-attraction of the planet.


2013 ◽  
Vol 730 ◽  
pp. 464-490 ◽  
Author(s):  
James C. McWilliams ◽  
Baylor Fox-Kemper

AbstractA geostrophic, hydrostatic, frontal or filamentary flow adjusts conservatively to accommodate a surface gravity wave field with wave-averaged, Stokes-drift vortex and Coriolis forces in an altered balanced state. In this altered state, the wave-balanced perturbations have an opposite cross-front symmetry to the original geostrophic state; e.g. the along-front flow perturbation is odd-symmetric about the frontal centre while the geostrophic flow is even-symmetric. The adjustment tends to make the flow scale closer to the deformation radius, and it induces a cross-front shape displacement in the opposite direction to the overturning effects of wave-aligned down-front and up-front winds. The ageostrophic, non-hydrostatic, adjusted flow may differ from the initial flow substantially, with velocity and buoyancy perturbations that extend over a larger and deeper region than the initial front and Stokes drift. The largest effect occurs for fronts that are wider than the mixed layer deformation radius and that fill about two-thirds of a well-mixed surface layer, with the Stokes drift spanning only the shallowest part of the mixed layer. For even deeper mixed layers, and especially for thinner or absent mixed layers, the wave-balanced adjustments are not as large.


2018 ◽  
Vol 198 ◽  
pp. 04010
Author(s):  
Zhonghao Han ◽  
Lei Hu ◽  
Na Guo ◽  
Biao Yang ◽  
Hongsheng Liu ◽  
...  

As a newly emerging human-computer interaction, motion tracking technology offers a way to extract human motion data. This paper presents a series of techniques to improve the flexibility of the motion tracking system based on the inertial measurement units (IMUs). First, we built a most miniatured wireless tracking node by integrating an IMU, a Wi-Fi module and a power supply. Then, the data transfer rate was optimized using an asynchronous query method. Finally, to simplify the setup and make the interchangeability of all nodes possible, we designed a calibration procedure and trained a support vector machine (SVM) model to determine the binding relation between the body segments and the tracking nodes after setup. The evaluations of the whole system justify the effectiveness of proposed methods and demonstrate its advantages compared to other commercial motion tracking system.


2020 ◽  
Vol 117 (5) ◽  
pp. 2265-2267 ◽  
Author(s):  
Xuezhu Zhang ◽  
Simon R. Cherry ◽  
Zhaoheng Xie ◽  
Hongcheng Shi ◽  
Ramsey D. Badawi ◽  
...  

A 194-cm-long total-body positron emission tomography/computed tomography (PET/CT) scanner (uEXPLORER), has been constructed to offer a transformative platform for human radiotracer imaging in clinical research and healthcare. Its total-body coverage and exceptional sensitivity provide opportunities for innovative studies of physiology, biochemistry, and pharmacology. The objective of this study is to develop a method to perform ultrahigh (100 ms) temporal resolution dynamic PET imaging by combining advanced dynamic image reconstruction paradigms with the uEXPLORER scanner. We aim to capture the fast dynamics of initial radiotracer distribution, as well as cardiac motion, in the human body. The results show that we can visualize radiotracer transport in the body on timescales of 100 ms and obtain motion-frozen images with superior image quality compared to conventional methods. The proposed method has applications in studying fast tracer dynamics, such as blood flow and the dynamic response to neural modulation, as well as performing real-time motion tracking (e.g., cardiac and respiratory motion, and gross body motion) without any external monitoring device (e.g., electrocardiogram, breathing belt, or optical trackers).


Author(s):  
Lisa Reissner ◽  
Gabriella Fischer ◽  
Renate List ◽  
Pietro Giovanoli ◽  
Maurizio Calcagni

The human hand is the most frequently used body part in activities of daily living. With its complex anatomical structure and the small size compared to the body, assessing the functional capability is highly challenging. The aim of this review was to provide a systematic overview on currently available 3D motion analysis based on skin markers for the assessment of hand function during activities of daily living. It is focused on methodology rather than results. A systematic review according to the PRISMA guidelines was performed. The systematic search yielded 1349 discrete articles. Of 147 articles included on basis of title, 123 were excluded after abstract review, and 24 were included in the full-text analysis with 13 key articles. There is still limited knowledge about hand and finger kinematics during activities of daily living. A standardization of the task is required in order to overcome the nonrepetitive nature and high variability of upper limb motion and ensure repeatability of task performance. To yield a progress in the analysis of human hand movements, an assessment of human kinematics including fingers, wrist, and thumb and an identification of relevant parameters that characterize a healthy motion pattern during functional tasks are needed.


2010 ◽  
Vol 88 (9) ◽  
pp. 689-700 ◽  
Author(s):  
E. I. Saad

The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous spheroid in a concentric spheroidal container are studied analytically. The same small departure from a sphere is considered for each spheroidal surface. In the limit of small Reynolds number, the Brinkman equation for the flow inside the porous region and the Stokes equation for the outside region in their stream functions formulations and velocity components, which are proportional to the translational and angular velocities, respectively, are used. Explicit expressions are obtained for both inside and outside flow fields to the first order in a small parameter characterizing the deformation of the spheroidal surface from the spherical shape. The hydrodynamic drag force and couple exerted on the porous spheroid are obtained for the special cases of prolate and oblate spheroids in closed forms. The dependence of the normalized wall-corrected translational and rotational mobilities on permeability for a porous spheroid in an unbounded medium and for a solid spheroid in a cell on the particle volume fraction is discussed numerically and graphically for various values of the deformation parameter. In the limiting cases, the analytical solutions describing the drag force and torque or mobilities for a porous spheroid in the spheroidal vessel reduce to those for a solid sphere and for a porous sphere in a spherical cell.


2014 ◽  
Vol 11 (92) ◽  
pp. 20130992 ◽  
Author(s):  
Leif Ristroph ◽  
Stephen Childress

Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving manoeuvrability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Measurements of lift show the benefits of wing flexing and the importance of selecting a wing size appropriate to the motor. Furthermore, we use high-speed video and motion tracking to show that the body orientation is stable during ascending, forward and hovering flight modes. Our experimental measurements are used to inform an aerodynamic model of stability that reveals the importance of centre-of-mass location and the coupling of body translation and rotation. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.


2002 ◽  
Vol 69 (4) ◽  
pp. 497-501 ◽  
Author(s):  
Z. C. Feng ◽  
B. He ◽  
S. J. Lombardo

A model has been developed for describing the stresses that arise during binder burnout in three-dimensional porous bodies. The pressure gradient that arises from the decomposition of binder in the pore space is treated as an equivalent body force. For input into the mechanics model, the pressure distribution is obtained from the analytical solution for three-dimensional porous bodies with anisotropic permeability. The normal and shear stresses are then calculated from finite element analysis for bodies of parallelepiped geometry. In general, the normal stresses occur at the center of the body and are an order of magnitude larger than the shear stresses. Both the normal and shear stresses depend on the body size, the body geometry, and on the permeability.


2021 ◽  
Author(s):  
Negar Golestani ◽  
Mahta Moghaddam

Abstract Activity recognition using wearable sensors has gained popularity due to its wide range of applications, including healthcare, rehabilitation, sports, and senior monitoring. Tracking the body movement in 3D space facilitates behavior recognition in different scenarios. Wearable systems have limited battery capacity, and many critical challenges have to be addressed to gain a trade-off among power consumption, computational complexity, minimizing the effects of environmental interference, and achieving higher tracking accuracy. This work presents a motion tracking system based on magnetic induction (MI) to tackle the challenges and limitations inherent in designing a wireless monitoring system. We integrated a realistic prototype of an MI sensor with machine learning techniques and investigated one-sensor and two-sensor configuration setups for motion reconstruction. This approach is successfully evaluated using measured and synthesized datasets generated by the analytical model of the MI system. The system has an average distance root-mean-squared error (RMSE) error of 3 cm compared to the ground-truth real-world measured data with Kinect.


Author(s):  
Rudolf Jánoš ◽  
Denys Fetko

The article describes the design of the body of a pneumobil that is to take part in international races. The shape of the body is designed in CAD software with emphasis on aerodynamic properties. There were also limitations in the design of the shape resulting from the safety and technological possibilities of production. The skeleton will be made of epoxy resin and glass fiber, which will be applied to the hoof made of extruded polystyrene by milling. The article describes the method of production, including technological conditions.


Sign in / Sign up

Export Citation Format

Share Document