scholarly journals Trends in groundwater changes driven by precipitation and anthropogenic activities on the southeast side of the Hu Line

2021 ◽  
Vol 16 (9) ◽  
pp. 094032
Author(s):  
Kai Liu ◽  
Xueke Li ◽  
Xin Long
2020 ◽  
Vol 642 ◽  
pp. 227-240
Author(s):  
L Lodi ◽  
R Tardin ◽  
G Maricato

Most studies of cetacean habitat use do not consider the influence of anthropogenic activities. We investigated the influence of environmental and anthropogenic variables on habitat use by humpback Megaptera novaeangliae and Bryde’s whales Balaenoptera brydei off the coast of the Brazilian city of Rio de Janeiro. Although there are 2 marine protected areas (MPAs) in this area, few data are available on cetacean habitat use or on the overlap of different cetacean species within these MPAs. Our aim was to evaluate the effectiveness of the MPAs and propose a buffer zone to better protect the biodiversity of the study area. We conducted systematic surveys and developed spatial eigenvector generalized linear models to characterize habitat use by the species in the study area. Habitat use by humpback whales was influenced only by depth, whereas for Bryde’s whales there was the additional influence of anthropogenic variables. For Bryde’s whales, which use the area for feeding, sea surface temperature and the distance to anchorages had a major influence on habitat use. We also showed that neither of the MPAs in the study area adequately protects the hotspots of either whale species. Most of the humpback whale grid cells with high sighting predictions were located within 2 km of the MPAs, while areas of high sighting prediction of Bryde’s whales were located up to 5 km from the MPAs, closer to beaches. Our findings provide important insights for the delimitation of protected areas and zoning of the MPAs.


2019 ◽  
Vol 30 (6) ◽  
pp. 242-245
Author(s):  
Hamadttu A. F. El-Shafie

Four insect species were reported as new potential pests of date palm in recent years. They are sorghum chafer (Pachnoda interrupta), the rose chafer (Potosia opaca), the sericine chafer beetle (Maladera insanablis), and the South American palm borer (Pysandisia archon). The first three species belong to the order Coleoptera and the family Scarabaeidae, while the fourth species is a lepidopteran of the family Castniidae. The injury as well as the economic damage caused by the four species on date palm need to be quantified. Due to climate change and anthropogenic activities, the date palm pest complex is expected to change in the future. To the author's knowledge, this article provides the first report of sorghum chafer as a pest damaging date palm fruit.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Badusha M. ◽  
Santhosh S

The hydro geochemical features of Neyyar River for a period of one year from May 2015 to April 2016 were analyzed. Six sampling sites were fixed considering physiography and present landuse pattern of the river basin. The residents in the drainage basin are primarily responsible for framing a better landuse and thereby maintain a good water and sediment regime. Geospatial pattern of the present landuse of the study area indicated that the sustainability of this river ecosystem is in danger due to unscientific landuse practices, which is reflected in the river quality as well. The parameters such as hydrogen ion concentration, electrical conductivity, chloride, Biological Oxygen Demand, total hardness and sulphate of river water and Organic Carbon of river bed sediments were analyzed in this study. The overall analysis shows that the highland areas are characterized by better quality of water together with low organic carbon, which is mainly due to better landuse and minimal reclamation. The midland and lowland areas are characterized by poor quality of water with high organic carbon, which is due to high anthropogenic activities and maximum pollutants associated with the region together with the alteration in landuse from a traditional eco-friendly pattern to a severely polluted current pattern.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 38-45
Author(s):  
A. N. EFREMOV ◽  
N. V. PLIKINA ◽  
T. ABELI

Rare species are most vulnerable to man-made impacts, due to their biological characteristics or natural resource management. As a rule, the economic impact is associated with the destruction and damage of individual organisms, the destruction or alienation of habitats. Unfortunately, the conservation of habitat integrity is an important protection strategy, which is not always achievable in the implementation of industrial and infrastructural projects. The aim of the publication is to summarize the experience in the field of protection of rare species in the natural habitat (in situ), to evaluate and analyze the possibility of using existing methods in design and survey activities. In this regard, the main methodological approaches to the protection of rare species in the natural habitat (in situ) during the proposed economic activity were reflected. The algorithm suggested by the authors for implementing the in situ project should include a preparatory stage (initial data collection, preliminary risk assessments, technology development, obtaining permitting documentation), the main stage, the content of which is determined by the selected technology and a long monitoring stage, which makes it possible to assess the effectiveness of the taken measures. Among the main risks of in situ technology implementation, the following can be noted: the limited resources of the population that do not allow for the implementation of the procedure without prior reproduction of individuals in situ (in vitro); limited knowledge of the biology of the species; the possibility of invasion; the possibility of crossing for closely related species that сo-exist in the same habitat; social risks and consequences, target species or population may be important for the local population; financial risks during the recovery of the population. The available experience makes it possible to consider the approach to the conservation of rare species in situ as the best available technology that contributes to reducing negative environmental risks.


2017 ◽  
Vol 3 (2) ◽  
pp. 30-36
Author(s):  
E. Amankwah, V. Hans-Jürgen

Agriculture in the Upper West region is primarily subsistence and rain-fed, and irrigation practice is significantly furrow andthe use of traditional watering can. This historical approach to agriculture is predicted to suffer severe setbacks due to climatechange. This research therefore explores farmers’ perception of climate change and its impact and how the farmers can cope withthe changing climate. The primary data was gathered through field observation, interviews and administration of questionnairesto about 400 irrigation farmers in three districts of the Upper West region. The data was analysed using 1. Statistical Packagefor Social Sciences (SPSS) and basic statistical tools. It was discovered that 62% of the farmers had no formal education withmajority above 50 years of age. Over 80% have observed rising temperatures and declining rainfall over the last few decades.This has led to higher evaporation and siltation of irrigation dams, higher transpiration of crops and water stress resultingin low crop yield, crop failure and food insecurity. The research also highlights anthropogenic activities that have influencedclimate variability and food production in the region. The research was concluded with suggested strategies to facilitate farmers’adaptation to climate variability.


2017 ◽  
Vol 68 (8) ◽  
pp. 1744-1748
Author(s):  
Catalina Stoica ◽  
Gabriela Geanina Vasile ◽  
Alina Banciu ◽  
Daniela Niculescu ◽  
Irina Lucaciu ◽  
...  

During the past few decades, the anthropogenic activities induced worldwide changes in the ecological systems, including the aquatic systems. This work analysed the contamination level of groundwater resources from a rural agglomeration (Central-Western part of Prahova County) by biological and physico-chemical approaches. The study was performed during the autumn of 2016 on several sampling sites (four drilling wells, depth higher than 100 m supplying three villages; two wells lower than 10 m depth and one spring). The water quality was evaluated by comparison with the limit values of the drinking water quality legislation (Law no.458/2002) and the Order 621/2014 (applicable to all groundwater bodies of Romania). The results showed that phenols and metals (iron and manganese) exceeded the threshold values in all sampling sites. Moreover, the anthropogenic factors including agriculture, use of fertilizers, manures, animal husbandry led to an increase of the bacterial load, particularly at wells sites.


2020 ◽  
Vol 4 (1) ◽  
pp. 14-28
Author(s):  
S. K. Gaikwad ◽  
N. D. Pathan ◽  
N. S. Bansode ◽  
S. P. Gaikwad ◽  
Y. P. Badhe ◽  
...  

To study the chemistry of major ion in groundwater from Vel (Velu) River basin, sixty (60) samples of dug wells and bore wells were collected and analyzed using standard techniques given by APHA. It shows order of dominance for cations, Na+ > Ca2+ > Mg2+ > K+ and in anionic concentration as HCO3- > Cl- > SO42- in groundwater. The pH of groundwater is slightly alkaline (range: pH 7.0 - 8.1), while average values of Electrical Conductivity (EC) is about 2641 µS/cm indicating high mineralization of groundwater. In general, the cationic concentration (Na+, K+, Ca2+ and Mg2+) of the groundwater increase in the downstream side (from Northwest to South east), suggesting geological control on the composition of groundwater while highest concentration is in lower part of the basin are generally associated with the high salinity. In the major anions, bicarbonate (HCO3-) is higher due to rock-water interaction. Average value of chloride is about of 235 mg/L due to discharge zones along with anthropogenic activities. The geochemical data plotted on Piper Trilinear Diagram is showing dominant hydro-chemical facies: Ca2++Mg2+, Na++ K+, Cl-+ SO42- -HCO3- found in 83.3 % samples indicating the alkaline earth exceeding the alkalis and the strong acids exceeds the weak acids. The pH, Total Hardness (TH) and Magnesium (Mg2+) of the samples show more proportion of samples falling above desirable limit. Otherwise the quality of groundwater is good for drinking. The irrigation indices like SAR, KR and SSP were considered to evaluate groundwater suitability for irrigation. Comparing with SAR parameter all samples are excellent to good for irrigation. In SSP, 33.3 % samples are within permissible, while 66.6% samples are doubtful for irrigation purpose. In KR almost all samples (excluding 04 samples in lower side of basin) are suitable for irrigation. So, variations in climate, geology with anthropogenic activities are modifying the groundwater geochemistry of Vel River Basin.


2014 ◽  
Vol 49 (4) ◽  
pp. 372-385
Author(s):  
Shawn Burdett ◽  
Michael Hulley ◽  
Andy Smith

A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow (NSE = 0.47–0.79, R2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (%d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.


1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (> 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


2018 ◽  
Vol 10 (1) ◽  
pp. 16-33 ◽  
Author(s):  
Shakirudeen Odunuga ◽  
Samuel Udofia ◽  
Opeyemi Esther Osho ◽  
Olubunmi Adegun

Introduction:Human activities exert great pressures on the environment which in turn cause environmental stresses of various intensities depending on the factors involved and the sensitivity of the receiving environment.Objective:This study examines the effects of anthropogenic activities along the sub-urban lagoon fragile coastal ecosystem using DPSIR framework.Results:The results show that the study area has undergone a tremendous change between 1964 and 2015 with the built up area increasing to about 1,080 ha (17.87%) in 2015 from 224 ha (1.32%) in 1964 at an average growth rate of 16.78ha per annum. The nature of the degradation includes an increasing fragility of the ecosystem through the emergence and expansion of wetlands, flooding and erosion as well as a reduction in the benefits from the ecosystem services. Population growth, between 2006 and 2015 for Ikorodu LGA, estimated at 8.84% per annum serves as the most important driving force in reducing the quality of the environment. This is in addition to Pressures emanating from anthropogenic activities. The state of the environment shows continuous resource exploitation (fishing and sand mining) with the impacts of the pressures coming from water pollution, bank erosion, biodiversity loss and flooding. Although there has been a strong policy formulation response from the government, weak implementation is a major challenge.Recommendation:The study recommends public awareness campaigns and the implementation of existing policies to ensure a sustainable sub-urban lagoon coastal environment..


Sign in / Sign up

Export Citation Format

Share Document