scholarly journals Growth of Bacillus sp. and Flavobacterium sp. in culture media with the addition of liquid whey tofu waste

Author(s):  
W H Satyantini ◽  
R M Pratiwi ◽  
A M Sahidu ◽  
D D Nindarwi
Keyword(s):  
2020 ◽  
pp. 1-4
Author(s):  
Opara C N ◽  
◽  
Anumudu C K ◽  

Lipases form an important group of relevant enzymes which have applications in various fields including; food, pharmaceutical, detergent, textile and cosmetic industries. Lipases can be produced from diverse sources including microorganisms. This study evaluated the potential of bacteria isolates from fresh-water clam Mercenaria Mercenaria to produce lipolytic enzymes. Ten samples of Clam (Mercenaria Mercenaria) were screened for the presence of lipase producing bacteria using classical culture methods. Eleven bacteria species were obtained, of which six (Actinomyces sp., E. coli, Bacillus sp., Pseudomonas sp., Clostridium sp. and Klebsiella sp.) produced lipases that had lipolytic activity in breaking down olive oil used in media supplementation. The best culture media and conditions for optimal production of lipases was studied and it was shown that supplementation of growth media with 2% dextrose at neutral pH gave the greatest yield of lipases when lipase producing isolates were grown in shake flasks. Measurement of biomass by culture and turbidimetric methods indicates that the highest cell mass was recorded by Pseudomonas sp at 7.8 x 105 CFU/ml, closely followed by Actinomyces sp. and Bacillus sp., at 6.2 x 105 CFU/ml and 5.3 x 105 respectively. The produced lipases were partially purified by precipitating with ammonium sulphate followed by dialysis. The total protein content of produced lipases was evaluated by the Lowry’s method, showing that estimated protein content followed the same trend as cell biomass with the highest recorded by Pseudomonas sp. at 1.53mg/ml, followed by Actinomyces sp. and Bacillus sp. at 1.47mg/ml and 1.32mg/ml respectively. The results obtained in this study shows that isolates obtained from freshwater clam can produce potent lipases which can be employed for industrial, food and other diverse uses


2019 ◽  
Vol 7 (1) ◽  
pp. 158
Author(s):  
Hatopan G. Napitupulu ◽  
Inneke F. M. Rumengan ◽  
Stenlly Wullur ◽  
Elvy L. Ginting ◽  
Joice R. T. S. L. Rimper ◽  
...  

The research was conducted at the Laboratory of Marine Molecular Biology and Pharmacy, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University. This research aims to isolate and analyze the morphology and molecular types of bacteria associated in rotifer’s culture media that use fisheries waste.The research was begin by culturing bacteria in rotifer maintenance media using Nutrient Broth media. After bacterial isolates were obtained, morphological characterization and DNA extraction was carried out. extraction was done using DNeasy Blood and Tissue Kit (Qiagen). After DNA was obtained, DNA was amplified through the Polymerase Reaction Chain (PCR) machine using a 16S RNA primer, followed by the separation of PCR products through electrophoresis and detection through UV Transluminator. The target PCR product was determined by comparing the 100 bp ladder DNA, with a yield of around 1400 bp, which was measured using ladder DNA available in the laboratory. The DNA that was successfully amplified was sent to be sequenced to determine the species of each microbe obtained.Based on the results of the research conducted, obtained Bacillus sp. bacteria associated with rotifer maintenance media.Keywords: Bacteria, Culture Media, DNA Extraction, PCR, Sequencing ABSTRAKPenelitian ini dilakukan di Laboratorium Biologi Molekuler dan Farmasetika Laut, Fakultas Perikanan dan Ilmu Kelautan, Universitas Sam Ratulangi.  Penelitian ini bertujuan untuk mengisolasi dan menganalisis morfologi dan molekuler jenis-jenis bakteri yang berasosiasi dalam media pemeliharaan rotifer yang menggunakan limbah perikanan.Penelitian dilakukan dengan cara mengkultur bakteri yang ada pada media pemeliharaan rotifer menggunakan media Nutrient Broth. Setelah isolat bakteri didapatkan, dilakukan karakterisasi morfologi dan dilakukan ekstraksi DNA.  ekstraksi dilakukan menggunakan DNeasy Blood and Tissue Kit (Qiagen).  Setelah DNA didapatkan, DNA diamplifikasi melalui mesin Polymerase Reaction Chain (PCR) menggunakan primer 16S RNA, diikuti dengan pemisahan produk PCR melalui electrophorisis dan deteksi melalui UV Transluminator. Produk PCR target ditentukan dengan membandingkan ladder DNA 100 bp, dengan hasil sekitar 1400 bp, yang diukur menggunakan ladder DNA yang tersedia di laboratorium.  DNA yang berhasil diamplifikasi, dikirim untuk dilakukan sekuensing untuk mengetahui spesies dari setiap mikroba yang didapatkan.  Berdasarkan hasil penelitian yang dilakukan, diperoleh bakteri Bacillus sp. yang berasosiasi pada media pemeliharaan rotifer. Kata Kunci: Bakteri,  Media Pemeliharaan, Ekstraksi DNA, PCR, Sekuensing


Microbiology ◽  
2013 ◽  
Vol 82 (6) ◽  
pp. 856-863 ◽  
Author(s):  
Saeed Gholamian ◽  
Soudabeh Gholamian ◽  
A. Nazemi ◽  
M. Miri Nargesi
Keyword(s):  

2016 ◽  
Vol 6 (01) ◽  
Author(s):  
Erika Erika ◽  
Rochmah Agustrina ◽  
Sumardi Sumardi ◽  
Mulyono Mulyono

Xylan is a carbon source in growth medium of extracellular xylanase producing bacteria. The purpose of this study was to get the optimum medium for the growth of Bacillus sp. in producing the xylanase. The factors consist of production time, carbon, and nitrogen source, as well as simple sugars. Addition carbon source used was delignified sugarcane bagasse, rice hulls, and corn cobs with different concentrations (0.25%; 0.5%; 0.75%; and 1% w/v) . Ammonium chloride, ammonium sulfate, and sodium nitrate with different concentrations (0.08%; 0.17%; 0.26%; and 0.35% w/v) were used as a source of nitrogen, while the simple sugar used was glucose, lactose, sucrose, and xylose. The results showed that the optimum culture media of Bacillus sp. to produce xylanase is media with 0.25% natural starch from the corn cob xylan as a carbon source, 0.26% ammonium chloride as a source of nitrogen, 0.0625 grams of sugar xylose, at pH 6, incubation temperature of 40°C, and 12 hours production time. In that media, xylanase activity was 0.2 U/mL.Keywords: agricultural waste, medium optimization, xylanase, Bacillus sp.   ABSTRAKXilan merupakan sumber karbon pada media pertumbuhan bakteri penghasil enzim ekstraseluler xilanase. Tujuan penelitian ini adalah mendapatkan media optimum untuk pertumbuhan Bacillus sp. dalam memproduksi xilanase. Perlakuan percobaan terdiri dari waktu produksi, sumber karbon, sumber nitrogen, dan penambahan gula sederhana. Sumber karbon yang digunakan adalah bagas tebu, sekam padi, dan tongkol jagung dengan variasi konsentrasi 0,25%; 0,5%; 0,75%; dan 1% (b/v) . Amonium klorida, amonium sulfat, dan natrium nitrat dengan variasi konsentrasi 0,08%; 0,17%; 0,26%; dan 0,35% (b/v) digunakan sebagai sumber nitrogen, sedangkan gula sederhana yang digunakan adalah glukosa, laktosa, sukrosa, dan xilosa masing-masing sebanyak 0,0625 b/v. Hasil percobaan menunjukkan bahwa media optimum pertumbuhan Bacillus sp. untuk produksi xilanase adalah media dengan 0,25% tepung xilan dari tongkol jagung sebagai sumber karbon, 0,26% amonium klorida sebagai sumber nitrogen, 0,0625 gram gula xilosa, pada pH media 6, suhu inkubasi 40°C, serta waktu produksi 12 jam. Dalam media tersebut, aktivitas xilanase yang dihasilkan sebesar 0,2 U/mL.Kata kunci : limbah pertanian, optimasi media, xilanase, Bacillus sp. 


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
Douglas R. Keene ◽  
Gregory P. Lunstrum ◽  
Patricia Rousselle ◽  
Robert E. Burgeson

A mouse monoclonal antibody produced from collagenase digests of human amnion was used by LM and TEM to study the distribution and ultrastructural features of an antigen present in epithelial tissues and in cultured human keratinocytes, and by immunoaffinity chromatography to partially purify the antigen from keratinocyte cell culture media.By immunofluorescence microscopy, the antigen displays a tissue distribution similar to type VII collagen; positive staining of the epithelial basement membrane is seen in skin, oral mucosa, trachea, esophagus, cornea, amnion and lung. Images from rotary shadowed preparations isolated by affinity chromatography demonstrate a population of rod-like molecules 107 nm in length, having pronounced globular domains at each end. Polyacrylamide gel electrophoresis suggests that the size of this molecule is approximately 440kDa, and that it is composed of three nonidentical chains disulfide bonded together.


Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


2020 ◽  
Vol 90 (1-2) ◽  
pp. 103-112 ◽  
Author(s):  
Michael J. Haas ◽  
Marilu Jurado-Flores ◽  
Ramadan Hammoud ◽  
Victoria Feng ◽  
Krista Gonzales ◽  
...  

Abstract. Inflammatory and oxidative stress in endothelial cells are implicated in the pathogenesis of premature atherosclerosis in diabetes. To determine whether high-dextrose concentrations induce the expression of pro-inflammatory cytokines, human coronary artery endothelial cells (HCAEC) were exposed to either 5.5 or 27.5 mM dextrose for 24-hours and interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF α) levels were measured by enzyme immunoassays. To determine the effect of antioxidants on inflammatory cytokine secretion, cells were also treated with α-tocopherol, ascorbic acid, and the glutathione peroxidase mimetic ebselen. Only the concentration of IL-1β in culture media from cells exposed to 27.5 mM dextrose increased relative to cells maintained in 5.5 mM dextrose. Treatment with α-tocopherol (10, 100, and 1,000 μM) and ascorbic acid (15, 150, and 1,500 μM) at the same time that the dextrose was added reduced IL-1β, IL-6, and IL-8 levels in culture media from cells maintained at 5.5 mM dextrose but had no effect on IL-1β, IL-6, and IL-8 levels in cells exposed to 27.5 mM dextrose. However, ebselen treatment reduced IL-1β, IL-6, and IL-8 levels in cells maintained in either 5.5 or 27.5 mM dextrose. IL-2 and TNF α concentrations in culture media were below the limit of detection under all experimental conditions studied suggesting that these cells may not synthesize detectable quantities of these cytokines. These results suggest that dextrose at certain concentrations may increase IL-1β levels and that antioxidants have differential effects on suppressing the secretion of pro-inflammatory cytokines in HCAEC.


2014 ◽  
Author(s):  
Lance C. Garmon ◽  
Meredith Patterson ◽  
Jennifer M. Shultz ◽  
Michael C. Patterson

Sign in / Sign up

Export Citation Format

Share Document