scholarly journals Heat transfer analysis on different pin fin types using Solid Works

2021 ◽  
Vol 850 (1) ◽  
pp. 012028
Author(s):  
Harshita Pant ◽  
Divyanshi Shukla ◽  
Shriya Rathor ◽  
S. Senthur Prabu

Abstract A fin is an extended part of an object whose purpose is to raise the rate of heat transfer mainly by convection. The heat flow in any object depends on the surface area, temperature difference, and convection coefficient. As convection coefficient cannot vary after a certain limit and temperature difference depends on the process, the way to increase the rate of heat transfer is to increase surface area which was done by adding fins. In this study, steady-state thermal analysis is performed on different types of fins and fins of different heights by using Solid works simulation. Different materials of fins are also used to verify results as the rate of heat transfer is independent of material. Aluminum 6061 and Copper is used as material for rectangular and cylindrical pin fins. In comparison, rectangular pin fin has a high rate of heat transfer as compared to copper pin fin, and also the rate of heat transfer is directly proportional to the height of the fins irrespective of the profile.

2019 ◽  
Vol 16 (10) ◽  
pp. 4262-4265
Author(s):  
Rupesh Gupta ◽  
Varinder Singh ◽  
Sheifali Gupta ◽  
Deepali Gupta

Extended surfaces are widely used in various applications like aerospace parts design, cooling and also in solar collectors for effective dissipation of heat. The present paper gives us an idea about the heat transfer analysis for solid pin fin and perforated pin fins that are fitted in a rectangular chamber. The rectangular chamber has a cross section area of 300 * 200 mm2. It is concluded from the experiment that perforated pin fin always works better as compared to solid pin fin in all conditions. Moreover, for lower range of Reynolds number, solid pin fin performs better whereas for higher range of Reynolds number, perforated pin fin performs better as compared to circular pin fin.


Author(s):  
S. B. Chiang ◽  
C. C. Wang

In this study, the concept of the thermal module of LEDs cooling by use of drilled hole to entrain air flow was examined. It is found that the drilled hole does not necessarily improve the overall performance. It depends on the size of the drilled hole, the number of drilled holes, and the locations. The heat transfer coefficients are generally increased with the number of drilled holes and the diameter of the drilled hole. In this paper, the plate fin heat sink has a higher heat transfer coefficients than pin fins, but the overall performance of the LED panel having pin fin outperforms that of plate fin. This is because the pin fin provides much larger surface area. For decrease the maximum temperature of the LED panel, placement of the drilled holes along the hot region will be more effective.


2021 ◽  
Author(s):  
Manikanda Prabu N ◽  
Venkateshwaran P ◽  
Ganesh Murali

Abstract Heat transfer is key phenomena of any cooling systems for the safe and satisfactory operating condition of an appliance. Fins are occupying a greater role in cooling of vehicle systems and specifically, radiating fins are used in space vehicles which represents an important part of the satellite thermal control system. The present work assumed three different profiles such as rectangular, stepped and elliptical pin-fins in radiation ambiance. The experiment is conducted in vacuum chamber setup to show the possibilities of heat transfer enhancement in radiating fins by taking those different profiles, also with Computational fluid dynamics. The performance of fins can be depicted in terms of the thermal conductivity and amount of heat transfer which is possible to evaluate from fin’s temperature distribution. However, a temperature dependent thermal conductivity is considered when there is a large temperature difference. Hence, the finite volume method is employed to simulate the temperature distribution due to the lower temperature gradient. The results of experimental and numerical analysis are used to compare the fin profiles for suitability in space vehicles.


Author(s):  
Sunil V. Dingare ◽  
Suneeta S. Sane ◽  
Aniket H. Kawade ◽  
Hrishikesh N. Kulkarni ◽  
Kaustibh U. Suranglikar

In electronic components, it is essential to provide for adequate cooling to ensure that overheating does not affect the performance. It has been observed that for short fins, (L/H ≤ 5) due to formation of stagnant zone, central portion of fin is ineffective. To overcome this problem central portion from plate fin is removed. By doing so average heat transfer coefficient of notched array was improved almost by 30percentage compared to normal plate fin array. In this study we present computational assessment of notched plate fin heat sink (NPFHS) & notched plate fin pin fin heat sink (NPFPFHS). Based on NPFHS, a NPFPFHS is constructed which is composed of a NPFHS and some columnar pins planted between notched plate fins. Limited experimentation is carried out for validation of numerical model. Numerical analysis is carried out to compare thermal performance of these two types of heat sinks under the condition of equal temperature difference between mean sink temperature and ambient temperature. The effects of fin spacing, fin height, pin fin diameter and temperature difference between fin and surroundings on the free convection heat transfer from horizontal fin arrays were studied. The analysis have been carried out for the two types of heat sinks with three different spacing, three different height, four temperature differences and three pin diameters.


Author(s):  
Michael E. Lyall ◽  
Alan A. Thrift ◽  
Atul Kohli ◽  
Karen A. Thole

The performance of many engineering devices from power electronics to gas turbines is limited by thermal management. Heat transfer augmentation in internal flows is commonly achieved through the use of pin fins, which increase both surface area and turbulence. The present research is focused on internal cooling of turbine airfoils using a single row of circular pin fins that is oriented perpendicular to the flow. Low aspect ratio pin fins were studied whereby the channel height to pin diameter was unity. A number of spanwise spacings were investigated for a Reynolds number range between 5000 to 30,000. Both pressure drop and spatially-resolved heat transfer measurements were taken. The heat transfer measurements were made on the endwall of the pin fin array using infrared thermography and on the pin surface using discrete thermocouples. The results show that the heat transfer augmentation relative to open channel flow is the highest for smallest spanwise spacings and lowest Reynolds numbers. The results also indicate that the pin fin heat transfer is higher than the endwall heat transfer.


Author(s):  
Jin Xu ◽  
Jiaxu Yao ◽  
Pengfei Su ◽  
Jiang Lei ◽  
Junmei Wu ◽  
...  

Convective heat transfer enhancement and pressure loss characteristics in a wide rectangular channel (AR = 4) with staggered pin fin arrays are investigated experimentally. Six sets of pin fins with the same nominal diameter (Dn = 8mm) are tested, including: Circular, Elliptic, Oblong, Dropform, NACA and Lancet. The relative spanwise pitch (S/Dn = 2) and streamwise pitch (X/Dn = 4.5) are kept the same for all six sets. Same nominal diameter and arrangement guarantee the same blockage area in the channel for each set. Reynolds number based on channel hydraulic diameter is from 10000 to 70000 with an increment of 10000. Using thermochromic liquid crystal (R40C20W), heat transfer coefficients on bottom surface of the channel are achieved. The obtained friction factor, Nusselt number and overall thermal performance are compared with the previously published data from other groups. The averaged Nusselt number of Circular pin fins is the largest in these six pin fins under different Re. Though Elliptic has a moderate level of Nusselt number, its pressure loss is next to the lowest. Elliptic pin fins have pretty good overall thermal performance in the tested Reynolds number range. When Re>40000, Lancet has a same level of performance as Circular, but its pressure loss is much lower than Circular. These two types are both promising alternative configuration to Circular pin fin used in gas turbine blade.


Author(s):  
K. Takeishi ◽  
T. Nakae ◽  
K. Watanabe ◽  
M. Hirayama

Pin fins are normally used for cooling the trailing edge region of a turbine, where their aspect ratio (height H/diameter D) is characteristically low. In small turbine vanes and blades, however, pin fins may also be located in the middle region of the airfoil. In this case, the aspect ratio can be quite large, usually obtaining values greater than 4. Heat transfer tests, which are conducted under atmospheric conditions for the cooling design of turbine vanes and blades, may overestimate the heat transfer coefficient of the pin-finned flow channel for such long pin fins. The fin efficiency of a long pin fin is almost unity in a low heat transfer situation as it would be encountered under atmospheric conditions, but can be considerably lower under high heat transfer conditions and for pin fins made of low thermal conductivity material. A series of tests with corresponding heat transfer models has been conducted in order to clarify the heat transfer characteristics of the long pin-finned flow channel. It is assumed that heat transfer coefficients can be predicted by the linear combination of two heat transfer equations, which were separately developed for the pin fin surface and for tubes in crossflow. To confirm the suggested combined equations, experiments have been carried out, in which the aspect ratio and the thermal conductivity of the pin were the test parameters. To maintain a high heat transfer coefficient for a long pin fin under high-pressure conditions, the heat transfer was augmented by adding a turbulence promoter on the pin-finned endwall surface. A corresponding equation that describes this situation has been developed. The predicted and measured values showed good agreement. In this paper, a comprehensive study on the heat transfer of a long pin-fin array will be presented.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Nwosu P. Nwachukwu ◽  
Samuel O. Onyegegbu

An expression for the optimum pin fin dimension is derived on exergy basis for a high temperature exchanger employing pin fins. The present result differs from that obtained by Poulikakos and Bejan (1982, “Fin Geometry for Minimum Entropy Generation in Forced Convection,” ASME J. Heat Transfer, 104, pp. 616–623) for a low temperature heat recovery application. Also, a simple relation is established between the amounts the base temperature of the optimized pin fin is raised for a range of absorptive coating values. Employing this relation, if the absorptivity of the coating, the plate emissivity, the number of protruding fins, and some area and fluid parameters are known, the corresponding value for the base temperature of the fin is immediately obtained. The analysis shows that the thermal performance of the exchanger improves substantially with a high absorptivity coating hence can be seen as a heat transfer enhancement feature of the exchanger operating with radiation dominance.


Author(s):  
Kathryn L. Kirsch ◽  
Jason K. Ostanek ◽  
Karen A. Thole ◽  
Eleanor Kaufman

Arrays of variably-spaced pin fins are used as a conventional means to conduct and convect heat from internal turbine surfaces. The most common pin shape for this purpose is a circular cylinder. Literature has shown that beyond the first few rows of pin fins, the heat transfer augmentation in the array levels off and slightly decreases. This paper provides experimental results from two studies seeking to understand the effects of gaps in pin spacing (row removals) and alternative pin geometries placed in these gaps. The alternative pin geometries included large cylindrical pins and oblong pins with different aspect ratios. Results from the row removal study at high Reynolds number showed that when rows four through eight were removed, the flow returned to a fully-developed channel flow in the gap between pin rows. When larger alternative geometries replaced the fourth row, heat transfer increased further downstream into the array.


Heat sinks or fins stand deployed for enhancing heat transfer. That’s why, planned experiments remain fortified for examining the impacts of SSF pin fin on thermal dispersal concerning constant thermal value 6 W/cm2 . For that five chromel-alumel thermocouples are preferred, above and beyond, SSF pin fins materials of stainless steel and aluminum. As anticipated, for both the stated SSF pin fins, temperature declines for increasing length scale. Besides, both results are comparable with each other. However, temperature distributions over SSF aluminum pin fin declines relatively at faster rate comparable to that over SSF stainless steel pin fin. Obviously, it may be owing to higher thermal conductivity of SSF aluminum pin fin. Therefore, it carries superior, pleasant and momentous thermal performances.


Sign in / Sign up

Export Citation Format

Share Document