scholarly journals Study on the Deformation Characteristics of Fractured Basalt Under Coupling of Three-Dimensional Stress and Water Pressure Cycling

2021 ◽  
Vol 861 (2) ◽  
pp. 022039
Author(s):  
Lei Fan ◽  
Meiwan Yu ◽  
Aiqing Wu ◽  
Yihu Zhang ◽  
Yujie Li
Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


Ground Water ◽  
2019 ◽  
Vol 58 (2) ◽  
pp. 278-290 ◽  
Author(s):  
Yun Zhang ◽  
Xuexin Yan ◽  
Tianliang Yang ◽  
Jichun Wu ◽  
Jianzhong Wu

2003 ◽  
Vol 37 ◽  
pp. 281-285 ◽  
Author(s):  
Paul D. Bates ◽  
Martin J. Siegert ◽  
Victoria Lee ◽  
Bryn P. Hubbard ◽  
Peter W. Nienow

AbstractChannels incised into bedrock, or Nye channels, often form an important component of subglacial drainage at temperate glaciers, and their structure exerts control over patterns and rates of (a) channel erosion, (b) water flow-velocity and (c) water pressure. The latter, in turn, exerts a strong control over basal traction and, thus, ice dynamics. In order to investigate these controls, it is necessary to quantify detailed flow processes in subglacial Nye channels. However, it is effectively impossible to acquire such measurements from fully pressurized, subglacial channels. To solve this problem, we here apply a three-dimensional, finite-volume solution of the Reynolds averaged Navier– Stokes (RANS) equations with a one-equation mixing-length turbulence closure to simulate flow in a 3 m long section of an active Nye channel located in the immediate foreground of Glacier de Tsanfleuron, Switzerland. Numerical model output permits high-resolution visualization of water flow through the channel reach, and enables evaluation of the experimental manipulation of the pressure field adopted across the overlying ice lid. This yields an increased theoretical understanding of the hydraulic behaviour of Nye channels, and, in the future, of their effect on glacier drainage, geomorphology and ice dynamics.


2013 ◽  
Vol 50 (12) ◽  
pp. 1204-1218 ◽  
Author(s):  
A.K. Leung ◽  
C.W.W. Ng

Understanding seasonal hydrogeological responses of vegetated soil slopes is vital to slope stability because pore-water pressure (PWP) varies from positive values upon rainfall in wet seasons to negative values upon plant evapotranspiration (ET) in dry seasons. There are, however, few case histories that report seasonal performance of vegetated soil slopes. In this study, a vegetated slope situated in Hong Kong was instrumented to analyse (i) groundwater flow during rainfall in the wet season and (ii) effects of plant ET on PWP in the dry season. Two- and three-dimensional anisotropic transient seepage analyses are conducted to identify groundwater flow mechanism(s) during a heavy rainstorm. Through water and energy balance calculations, measured plant-induced suction is interpreted with plant characteristic and climatic data. During the rainstorm, substantial recharge of the groundwater table was recorded, likely due to preferential water flow along relict joints and three-dimensional cross-slope groundwater flow. During the dry season, the peak suction induced by plant ET is up to 200 kPa and the depth of influence is shallower than 200% of the root depth. For the range of suctions monitored, root-water uptake is revealed to have been restricted by suction not very significantly and was driven mainly by the climatic variation.


2013 ◽  
Vol 477-478 ◽  
pp. 21-24
Author(s):  
Hui Kai Gao ◽  
Jian Meng Huang

The contact between substrate and micro-cantilever simplified as an ideal flat substrate contact with a micro-cantilever rough surface. A three-dimensional adhesive contact model was established on isotropic rough surfaces exhibiting fractal behavior, and the equivalent plastic strain was discussed using the finite element analysis. The maximum equivalent plastic strain and its depth were presented with the different paths of rough solid when loading. The result show that the equivalent plastic strain versus different depth which at different locations showed different laws, in the top area of the asperities versus different depth, the maximum equivalent plastic strain occurs in the subsurface range about 0.5μm from the surface or on the surface. In addition, with different deformation characteristics, the degree of the equivalent plastic strain was different.. The contact model between micro-cantilever rough surface and flat substrate will lay a foundation to further research on the substance of the process of friction and wear.


2022 ◽  
Vol 12 (2) ◽  
pp. 567
Author(s):  
Young-Hak Lee ◽  
Jung-Hyun Ryu ◽  
Joon Heo ◽  
Jae-Woong Shim ◽  
Dal-Won Lee

In recent years, as the number of reservoir embankments constructed has increased, embankment failures due to cracks in aging conduits have also increased. In this study, a crack in a conduit was modeled based on the current conduit design model, and the risk of internal erosion was analyzed using a large-scale model test and three-dimensional deformation–seepage analysis. The results show that when cracks existed in the conduit, soil erosion and cavitation occurred near the crack area, which made the conduit extremely vulnerable to internal erosion. Herein, a model is proposed that can reduce internal erosion by applying a layer of sand and geotextiles on the upper part of the conduit located close to the downstream slope. In the proposed model, only partial erosion occurred inside the conduit, and no cavitation appeared near the crack in the conduit. The results suggest that internal erosion can be suppressed when the water pressure acting intensively on the crack in the conduit is dispersed by the drainage layer. To validate these results, the pore water pressure, seepage line, and hydraulic gradient were investigated to confirm the erosion phenomenon and reinforcement effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lina Luo ◽  
Gang Lei ◽  
Haibo Hu

Highway tunnel plays an increasingly prominent role in the development of high-grade highway traffic in mountainous countries or regions. Therefore, it is necessary to explore the deformation characteristics of the surrounding rock of a six-lane multiarch tunnel under different excavation conditions. Using the three-dimensional indoor model test and finite element analysis, this paper studies the dynamic mechanical behavior of a six-lane construction, reveals the whole process of the surrounding rock deformation process of class II surrounding rock under different excavation conditions, and puts forward the best construction and excavation method. The results show that the maximum displacement rate of excavation scheme III is the largest, and the maximum displacement rate of excavation scheme I is basically the same as that of excavation scheme II. Therefore, in terms of controlling the displacement rate of the surrounding rock, the effect of excavation scheme I is basically the same as that of excavation scheme II, while that of excavation scheme III is poor. In terms of construction technology, scheme II is simpler than scheme I and can ensure the integrity of the secondary lining. Therefore, in class II surrounding rock of the supporting project, it is recommended to adopt scheme II for construction.


2021 ◽  
Author(s):  
Timo Koch ◽  
Hanchuan Wu ◽  
Kent-André Mardal ◽  
Rainer Helmig ◽  
Martin Schneider

<p>1D-3D methods are used to describe root water and nutrient uptake in complex root networks. Root systems are described as networks of line segments embedded in a three-dimensional soil domain. Particularly for dry soils, local water pressure and nutrient concentration gradients can be become very large in the vicinity of roots. Commonly used discretization lengths (for example 1cm) in root-soil interaction models do not allow to capture these gradients accurately. We present a new numerical scheme for approximating root-soil interface fluxes. The scheme is formulated in the continuous PDE setting so that is it formally independent of the spatial discretization scheme (e.g. FVM, FD, FEM). The interface flux approximation is based on a reconstruction of interface quantities using local analytical solutions of the steady-rate Richards equation. The local mass exchange is numerically distributed in the vicinity of the root. The distribution results in a regularization of the soil pressure solution which is easier to approximate numerically. This technique allows for coarser grid resolutions while maintaining approximation accuracy. The new scheme is verified numerically against analytical solutions for simplified cases. We also explore limitations and possible errors in the flux approximation with numerical test cases. Finally, we present the results of a recently published benchmark case using this new method.</p>


Sign in / Sign up

Export Citation Format

Share Document