scholarly journals Evaluation of air quality and thermal comfort in classroom

2021 ◽  
Vol 881 (1) ◽  
pp. 012028
Author(s):  
A L Pertiwi ◽  
L H Sari ◽  
A Munir ◽  
Zahriah

Abstract Air quality in the classroom can affect the health of students because students spend a lot of time in the classroom for learning activities. In addition to the air quality of healthy buildings, it is also related to thermal comfort. During the learning process, a comfortable learning interaction is needed, to make it easier for teachers to deliver learning materials. Therefore, this study evaluated the classrooms of SDN 10 Banda Aceh and SDN Kajhu Aceh Besar which were used as objects of research studies. This study uses a quantitative approach through measuring air quality parameters, namely CO2 (Carbon Dioxide), HCHO (Formaldehyde), and TVOC (Total Volatile Organic Compound) concentrations, while thermal comfort, namely air temperature, humidity, and wind speed using an air quality detector and hotwire anemometer. The level of air quality is evaluated based on MENKES/SK/2011 while thermal comfort is evaluated based on the Indonesian national standard SNI and adaptive thermal comfort. Based on the results of the research, the air quality in both schools still meets the MENKES/SK/2011 standard, while the level of thermal comfort in both schools is classified as uncomfortable according to SNI and adaptive thermal comfort.

Author(s):  
Francis Abulude ◽  
Fagbayide Samuel Dare ◽  
Akinyinka Akinnusotu ◽  
Olatunde Elubode Makinde ◽  
Jamok Jacob Elisha

Air quality has been a major concern throughout the world, Nigeria inclusive. The monitoring of air quality involves indoor and outdoor air quality. In this study, our concern was on indoor air quality. The aim of this study was to assess the air quality of residential homes (17), classrooms (3), hospitals (2), offices (5), Shops (2), and laboratories (5) in Akure, Nigeria in terms of formaldehyde (HCHO), total volatile organic compound (TVOC), Particulate matter (PM1.0; PM2.5, and PM10). A Multifunction Air Detector was used for the assessment using the manufacturers’ procedures and the locations were identified using a Mini GPS. The results revealed as follows: HCHO (0.001-0.030 mg/m3), TVOC (0.003-362 mg/m3), PM1.0 (004-014 µg/m3), PM2.5 (006-020 µg/m3), and PM10 (006-022 µg/m3). The results obtained were below the 24 h pollution recommended standards (0.1 mg/m3- HCHO; TVOC; 10-20 μ/m3 PM) of EPA and WHO. Statistically, there were correlations within the pollutants and weather. The Indoor air quality (IAQ) depicted the areas as ‘good,’ and toxicity potential (TP) were below unity. Although the locations looked safe, it is recommended that constant monitoring of the indoors should be ensured and proper ventilation should be provided.


2019 ◽  
Vol 17 (1-2) ◽  
Author(s):  
Francis Olawale Abulude ◽  
Samuel Dare Fagbayide ◽  
Akinyinka Akinnusotu ◽  
Olatunde Elubode Makinde ◽  
Jamok Jacob Elisha

Air quality has been a major concern throughout the world, Nigeria inclusive. The monitoring of air quality involves indoor and outdoor air quality. In this study, our concern was on indoor air quality. The aim of this study was to assess the air quality of residential homes (17), classrooms (3), hospitals (2), offices (5), Shops (2), and laboratories (5) in Akure, Nigeria in terms of formaldehyde (HCHO), total volatile organic compound (TVOC), Particulate matter (PM1.0; PM2.5, and PM10). A Multifunction Air Detector was used for the assessment using the manufacturers’ procedures and the locations were identified using a Mini GPS. The results revealed as follows: HCHO (0.001-0.030 mg/m3), TVOC (0.003-362 mg/m3), PM1.0 (004-014 µg/m3), PM2.5 (006-020 µg/m3), and PM10 (006-022 µg/m3). The results obtained were below the 24 h pollution recommended standards (0.1 mg/m3- HCHO; TVOC; 10-20 μ/m3 PM) of EPA and WHO. Statistically, there were correlations within the pollutants and weather. The Indoor air quality (IAQ) depicted the areas as ‘good,’ and toxicity potential (TP) were below unity. Although the locations looked safe, it is recommended that constant monitoring of the indoors should be ensured and proper ventilation should be provided.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 286
Author(s):  
Dorina Camelia Ilieș ◽  
Florin Marcu ◽  
Tudor Caciora ◽  
Liliana Indrie ◽  
Alexandru Ilieș ◽  
...  

Poor air quality inside museums is one of the main causes influencing the state of conservation of exhibits. Even if they are mostly placed in a controlled environment because of their construction materials, the exhibits can be very vulnerable to the influence of the internal microclimate. As a consequence, museum exhibits must be protected from potential negative effects. In order to prevent and stop the process of damage of the exhibits, monitoring the main parameters of the microclimate (especially temperature, humidity, and brightness) and keeping them in strict values is extremely important. The present study refers to the investigations and analysis of air quality inside a museum, located in a heritage building, from Romania. The paper focuses on monitoring and analysing temperature of air and walls, relative humidity (RH), CO2, brightness and particulate matters (PM), formaldehyde (HCHO), and total volatile organic compounds (TVOC). The monitoring was carried out in the Summer–Autumn 2020 Campaign, in two different exhibition areas (first floor and basement) and the main warehouse where the exhibits are kept and restored. The analyses aimed both at highlighting the hazard induced by the poor air quality inside the museum that the exhibits face. The results show that this environment is potentially harmful to both exposed items and people. Therefore, the number of days in which the ideal conditions in terms of temperature and RH are met are quite few, the concentration of suspended particles, formaldehyde, and total volatile organic compounds often exceed the limit allowed by the international standards in force. The results represent the basis for the development and implementation of strategies for long-term conservation of exhibits and to ensure a clean environment for employees, restorers, and visitors.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 806
Author(s):  
Ozge Cemiloglu Ulker ◽  
Onur Ulker ◽  
Salim Hiziroglu

Volatile organic compounds (VOCs) are the main source influencing the overall air quality of an environment. It is a well-known fact that coated furniture units, in the form of paints and varnishes, emit VOCs, reducing the air quality and resulting in significant health problems. Exposure time to such compounds is also an important parameter regarding their possible health effects. Such issues also have a greater influence when the exposure period is extended. The main objective of this study was to review some of the important factors for the emission of VOCs from coated furniture, from the perspective of material characteristics, as well as health concerns. Some methods for controlling VOC emissions to improve indoor air quality, from the point of view recent regulations and suggestions, are also presented in this work.


2018 ◽  
Vol 768 ◽  
pp. 31-35
Author(s):  
Jin Wang ◽  
Zhen Zhu Ma ◽  
Lu Chen ◽  
Hong Juan Sun ◽  
Wu Kun Fan

With reference to the international standard ISO16000-9 and the national standard GB/T 31106-14, this paper has chosen leather seats as the research object in order to study the emission of volatile organic compounds (VOCs) and total volatile organic compound (TVOC). The test results show that about 21 species of VOCs released from the leather seats were measured, including several types of aldehydes, ketones, aromatic hydrocarbon ,hydrocarbon, lipids and so on.This paper analysis the possible sources of volatile organic compounds in leather seats as well.


Author(s):  
Mageshkumar P ◽  
Ramesh S ◽  
Angu Senthil K

A comprehensive study on the air quality was carried out in four locations namely, Tiruchengode Bus Stand, K.S.R College Campus, Pallipalayam Bus Stop and Erode Government Hospital to assess the prevailing quality of air. Ambient air sampling was carried out in four locations using a high volume air sampler and the mass concentrations of PM10, PM2.5, SO2, NOX and CO were measured. The analyzed quality parameters were compared with the values suggested by National Ambient Air Quality Standards (NAAQS). Air quality index was also calculated for the gaseous pollutants and for Particulate Matters. It was found that PM10 concentration exceeds the threshold limits in all the measured locations. The higher vehicular density is one of the main reasons for the higher concentrations of these gaseous pollutants. The air quality index results show that the selected locations come under moderate air pollution.


Sign in / Sign up

Export Citation Format

Share Document