scholarly journals Study of making coal water slurry with lignite Pendopo coal

2021 ◽  
Vol 882 (1) ◽  
pp. 012029
Author(s):  
M A Rahmanta

Abstract The Coal Water Slurry (CWS) technology increases the calorific value and changes the phase of coal from solid to liquid. The CWS Plant with a coal capacity of 1.4 t/hour located at Karawang, West Java converts lignite coal to CWS. Coal undergoes pulverizing, upgrading, and slurry-making processes to become CWS. Pulverization is the process of refining coal size into 200 mesh. The upgrading process is through reducing the moisture content in heat exchangers (HE). It occurs in HE where the coal is pressurized to 15 MPa and the temperature is maintained at 330 0C for 30 minutes. The research objective was to determine the CWS characteristics of the South Sumatra Pendopo lignite coal. The method used is through testing where the Pendopo coal is converted into CWS at the CWS Plant. The result shows that Pendopo coal which has a heating value of High Heating Value (HHV) 2,725.00 kCal/kg As Received (AR) has an increase in HHV heating value of 3,218.00 kcal/kg AR when it becomes CWS. The total moisture content of Pendopo coal has decreased from 49.36% to 44.58% when it becomes CWS. The fixed carbon content of Pendopo coal increased from 19.78% AR to 24.01% AR.

FLORESTA ◽  
2015 ◽  
Vol 45 (4) ◽  
pp. 713 ◽  
Author(s):  
Diego Aleixo Silva ◽  
Gabriela Tami Nakashima ◽  
João Lúcio Barros ◽  
Alessandra Luzia Da Roz ◽  
Fabio Minoru Yamaji

O objetivo deste trabalho foi caracterizar a produção de briquetes feita a partir de quatro diferentes biomassas residuais. Foram utilizados os resíduos de serragem de Eucalyptus sp, serragem de Pinus sp, bagaço de cana-de-açúcar (Saccharum officinarum L.) e palha de cana-de-açúcar. Os resíduos foram tratados para que obtivessem 12% de umidade e uma granulometria inferior a 1,70 mm. Foram produzidos 15 briquetes para cada um dos quatro tratamentos. A pressão utilizada foi de 1250 kgf.cm-2 durante 30 segundos. Os briquetes obtiveram densidades que oscilaram 0,88 a 1,11 g.cm-3. Isto representou uma faixa de 5 a 14 vezes a menos de ocupação de volume para uma mesma quantidade de massa. O poder calorifico foi de 19.180 J.kg-1 e 20.315 J.kg-1 para as serragens de eucalipto e pinus respectivamente. Para o bagaço e palha de cana os valores foram de 18.541 J.kg-1 e 15.628 J.kg-1. A palha da cana-de-açúcar apresentou um teor de cinzas de 12%. As expansões dos tratamentos oscilaram 4 a 9% e as resistências mecânicas variaram de 1,215 MPa à 0,270 MPa. Todos os briquetes se mostraram resistentes para um empilhamento superior a 10 m de altura. O procedimento adotado pode ajudar a diminuir o espaço de estocagem e de transporte. AbstractThis research aims to characterize the production of briquettes from four different biomasses. We used residues such as Eucalyptus sp sawdust, Pinus sp sawdust , sugarcane bagasse (Saccharum officinarum L.) and sugarcane straw. The residues were treated to obtain 12% moisture content and particle size less than 1.70 mm. We produced 15 briquettes for each treatment. The pressure used was 1250 kgf.cm-2 for 30 seconds. The briquettes obtained densities ranged from 0.88 to 1.11 g.cm-3. This represented a range of 5 to 14 times less volume occupancy for the same amount of mass. The high heating value (HHV) was 19,180 J.kg-1 and 20,315 J.kg-1 for eucalyptus and pine sawdust respectively. The HHV for the bagasse was 18,541 J.kg-1 and for straw was 15,628 J.kg-1. The straw presented an ash content of 12%. The expansions of the treatments ranged 4 to 9% and mechanical resistances ranging from 1,215 MPa to 0,270 MPa. All briquettes were resistant to a higher stacking to 10 m high. The methods can help to decrease the space of storage and transport.Keywords: Waste; biofuel; energy; compression; stacking.


2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Paula Martucheli Amaral ◽  
Luciano Donizeti Varanda ◽  
Gabriela Tami Nakashima ◽  
Pâmela Beatriz Moreira De Oliveira ◽  
Luis Ricardo Oliveira Santos ◽  
...  

The objective of this study was the characterization, analysis and compaction of residues from castor oil plant pie extraction to verify its potential as solid biofuel. The chemical analysis, the mechanical test and the gross calorific value had satisfactory results. With the extraction of residual oil of the material there was a decrease on the high heating value. The produced briquettes presented good longitudinal expansion as well as mechanical strenght, however the presence of residual oil had influence on their strenght. In conclusion, the castor oil plant pie possesses  energetic characteristics suitable for solid biofuel production, in addition it contributes with the reduction of industrial waste amount.


Author(s):  
Jatmiko Edi Siswanto

The growth of the palm oil management industry in Jambi which has an impact on the increasing size of palm oil management holidays include Fiber and Shells. Each processing of 1 ton of FFB produces 120 kg of fiber and produces 50 kg of shells. Where the two wastes have a high calorific value and thousands of tons of FFB are processed in Jambi every month. In this analysis will analyze the composition of combustion using fiber and shell to get the highest calorific value on the Boiler, where the composition analyzed is the ratio of 100% Fiber, 75% Fiber 25% Shell, 50% Fiber 50% Shell, 25% Fiber 75% Shell 100% shell. The results of research analysis The heating value of fiber and shell composition variations ranged from 14978,053 kJ/kg to 15463,083 kJ/kg. With the highest heating value is 100% fiber composition (15463,083 kJ / kg), and the lowest heating value is 100% shell composition. (14978,053 kJ/kg). The composition that gives the highest profit is the composition of 100% fiber. With the details of the value of water content, air requirements, low flue gas, and also produces a high heating value.


2019 ◽  
Vol 693 (1) ◽  
pp. 7-17
Author(s):  
Krissina Camilla Molinari ◽  
Washington Luiz Esteves Magalhães ◽  
Agnieszka Pawlicka ◽  
Gilmara de Oliveira Machado

REAKTOR ◽  
2019 ◽  
Vol 18 (04) ◽  
pp. 183 ◽  
Author(s):  
Santiyo Wibowo ◽  
Ningseh Lestari

Peanut shells could be regarded as biomass wastes generated from agricultural products, which are abundantly available.  The current handling of those wastes is merely through direct incineration, without a proper and controlled manner. Consequently, it could arouse environmental concerns, such as air pollution and human respiratory diseases.  One alternative solution is converting those peanut shells to bio-pellet, expectedly applicable for fuels.  Relevantly, research on bio-pellet manufacture from peanut shells, previously treated with the torrefaction, was conducted. It’s aimed mainly to identify the fuel-related characteristics of bio-pellet products.  The tested bio-pellet parameters covered, moisture content, ash content, volatile matters, fixed carbon content, calorific values, and density.  The results revealed that torrefaction temperature and time at raw materials (peanut shells) could improve their qualities in regard to particular calorific value compared to those before such torrefaction; which referred to Indonesia’s Standard (SNI-8021-2014) for wood bio-pellet.  Further, torrefaction could increase bio-pellet quality which satisfied the SNI’s Standard, except for ash content.  Optimal torrefaction treatment was obtained at 300oC temperature for 60 minutes, whereby it achieved remarkable bio-pellet characteristics in terms of moisture content (3.092%), ash content (6.116%), volatile matters (38.387%), fixed carbon (55.447%), calorific value (6174 cal/g), and density (0.703 g/cm3). The torrefaction bio-pellets from peanut shells could achieve remarkable performances, with respect to fuel consumption rate (0.68 kg/hr), heating value (6174 kcal/kg), and thermal efficiency (16.67%).


Author(s):  
Dwi Pangga ◽  
Sukainil Ahzan ◽  
Habibi Habibi ◽  
A’an Hardiyansyah Putra Wijaya ◽  
Linda Sekar Utami

ABSTRAKTujuan dari penelitian ini yaitu untuk menghasilkan briket tongkol jagung sebagai alternative sumber energi yang memiliki nilai kalor yang tinggi. Briket tongkol jagung dibuat dari tongkol jagung yang sudah dikeringkan dan dihaluskan sebelumnya dengan ukuran 20 mesh. Masing-masing perlakuan dicetak dengan variasi persentase perekat tepung tapioka yaitu 5%, 10%, dan 15%. Selain variasi perekat dilakukan juga variasi tekanan pembentukannya untuk melihat komposisi terbaik yang menghasilkan nilai kalor yang tinggi dan laju pembakaran yang sesuai. Briket selanjutnya diuji nilai kalor dan laju pembakarannya dengan menggunakan alat bom calorimeter. Hasil penelitian menunjukkan bahwa secara berturut-turut nilai kalor dan laju pembakaran briket dengan persentase komposisi perekat 5%, 10%, 15% yaitu 21,00 kJ, 22,68 kJ, 31,08 kJ, dan 12,00 gram/menit, 13,33 gram/menit, 13,50 gram/menit. Hasil terbaik dihasilkan pada komposisi persentase perekat 15% dengan nilai kalor mencapai 31,08 kJ, dan laju pembakaran 13,50 gram/menit yang tidak terlalu jauh meningkat dibandingkan dengan komposisi persentase perekat lainnya. Kata kunci: briket; tongkol jagung; nilai kalor; laju pembakaran  ABSTRACTThe purpose of this research is to produce corn cobs briquettes as an alternative energy source that has a high calorific value. Corn cobs briquettes are made from corn cobs that have been dried and previously mashed with a size of 20 mesh. Each treatment was printed with variations in the percentage of tapioca starch adhesive, namely 5%, 10%, and 15%. In addition to variations of the adhesive, variations in the formation pressure were also carried out to see the best composition that produced a high heating value and an appropriate combustion rate. The briquettes were then tested for calorific value and rate of combustion using a bomb calorimeter. The results showed that the calorific value and burning rate of briquettes with the percentage of adhesive composition 5%, 10%, 15%, were 21.00 kJ, 22.68 kJ, 31.08 kJ, and 12.00 gram/minute, respectively. 13.33 grams/minute, 13.50 grams/minute. The best results were obtained at 15% adhesive percentage composition with a calorific value of 31.08 kJ, and a burning rate of 13.50 gram/minute which was not significantly increased compared to other adhesive percentage compositions. Keywords: briquettes; corn cobs; calorific value; combustion rate


2019 ◽  
Vol 2 (3) ◽  
pp. 954-963
Author(s):  
Aboubaker AbdallaIbrahim Ali ◽  
Hüseyin Akilli

Dewatered domestic wastewater sludge (DDWS) is one of the largest contributors of waste material in the world, and it immediately elevates local environmental problems, especially in the urban area. The conversion of this material into a usable form of green energy, such as syngas through gasification, can be a vital solution. Hence, this method not only solves the environmental issues related to DDWS disposal but also participates as an energy source. To achieve this goal, the essential fuel characterization, which includes initial moisture content, high heating value, ultimate analysis, and proximate analysis, were carried out to assess the potential energy in DDWS. Due to the high expenses of the successful design of the gasifier reactor, and there are no efficient methods to predict the gasification performance, the model of the DDWS gasification process using ASPEN Plus software was developed. As ASPEN Plus software does not contain a built-in gasifier reactor model, a combination of various reactors is used to simulate the gasification processes. These processes were divided out into two stages. In the first stage, DDWS was decomposed into its element by specifying yield distribution. By using Gibbs free energy minimization approach, the gasification reactions were modeled. The current model was validated with the previously published work. From the characterization findings, DDWS showed high initial moisture content 84.64% and potential energy with 16.84 MJ/kg high heating value. The proximate analysis based on the dry base of DDWS exhibited that more than 55.42 % of their mass is composed of volatile materials, and ash content is found to be less than 25.79%.


2018 ◽  
Vol 14 (4) ◽  
pp. 408-413
Author(s):  
Nur Syairah Mohamad Aziz ◽  
Adilah Shariff ◽  
Nurhayati Abdullah ◽  
Nurhidayah Mohamed Noor

The aim of this study is to investigate the potential of coconut frond as a feedstock for biochar production via slow pyrolysis process.  Proximate, elemental and thermogravimetric analysis were performed to evaluate the chemical and thermal properties of the coconut frond.  The percentage of its lignocellulosic component and high heating value were determined. Surface morphology of coconut frond was examined using field emission scanning electron microscope (FESEM). Coconut frond (CF) contains 78.03±3.91 d.b. wt% of volatile matter, 4.96±0.07 d.b. wt% of ash content and 17.01±3.86 d.b. wt% of fixed carbon. Elemental analysis revealed a sulfur content of 0.94±0.12 %, while the percentage of nitrogen is 0.46±0.33%. The composition of carbon and hydrogen are 34.0±6.22 % and 7.71±0.34 % respectively. The high heating value of CF is 17.77±0.40 MJ/kg. CF consists of 43.91±1.80 % cellulose, 31.58±1.20 % hemicellulose, and 18.15±0.60 % lignin. From thermogravimetric (TG) analysis, it is apparent that the weight loss of CF occurred prominently in the temperature range 200°C - 400°C.  The peaks of the DTG curve at 281.75±0.35 °C and 334.08±0.35°C indicate the weight loss of coconut frond sample due to the degradation of hemicellulose and cellulose, respectively. The FESEM images of CF show its fibrous strands are compact with a few large pores with diameters around 42.5 - 48.1 μm large pores in the center of the CF sample. The results of the analysis show that CF has a potential as a feedstock for biochar production via slow pyrolysis. CF also can be used in other application such as syngas and bio-oil production due to the low lignin percentage and high volatile percentage.


Nativa ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 300
Author(s):  
Thammi Queuri Gomes Da Cunha ◽  
Pedro Vilela Gondim Barbosa ◽  
Pedro Augusto Fonseca Lima ◽  
Thalles Santiago Pimentel ◽  
Lucas Lemes de Souza Peixoto ◽  
...  

O processamento dos painéis de MDF, para a fabricação de móveis, gera uma grande quantidade de resíduos que constituem passivo ambiental, podendo ser utilizados para geração de energia. O objetivo deste trabalho foi avaliar as características do resíduo de MDF e seu aproveitamento na produção de pellets, visando a aplicação energética. A caracterização energética do resíduo foi realizada por meio da química imediata (teores de cinzas, voláteis e carbono fixo) e do poder calorífico superior. Além disso, foram produzidos e avaliados pellets (características energéticas e físico-mecânicas). A avaliação das características do resíduo: poder calorífico superior (4427,8 kcal.kg-1) e química imediata (carbono fixo, materiais voláteis e cinzas foram 16,3; 82,3 e 1,4%, respectivamente) e dos pellets de MDF: densidade aparente (1,15 g.cm-3), a granel (0,61 g.cm-3), energética (2,6 a 5,5 Gcal.m-3) e durabilidade (99,87%) indicaram a viabilidade técnica do aproveitamento do material como fonte energética. As características energéticas e físico-mecânicas dos pellets de MDF atenderam as especificações de qualidade exigidas nas normas internacionais de comercialização, exceto para o diâmetro médio.Palavras-chave: materiais densificados, potencial energético, painéis. CHARACTERIZATION OF MDF RESIDUE AND ITS USE IN PELLET PRODUCTION ABSTRACT:The processing of MDF panels, for the manufacture of furniture, generates a large amount of residues that constitutes an environmental liability, and can be used for power generation. The objective of this work was to evaluate the characteristics of the MDF residue and its use in the production of pellets, aiming at the energetic application. The energetic characterization of the residue was carried out by means of the proximate analysis (ash, volatile and fixed carbon contents), calorific value. In addition, pellets were produced and evaluated (energy and physico-mechanical characteristics). The evaluation of the characteristics of the residue: high heating value  (4427.8 kcal kg-1) and proximate analysis (fixed carbon, volatile materials and ash were 16.3, 82.3 and 1.4%, respectively) and pellets: density (1.15 g cm -3), bulk density (0.61 g cm -3), energy density (2.6-5.5 Gcal m-3) and durability (99.87 %) indicated the technical feasibility of using the material as an energy source. The energy and physical-mechanical characteristics of MDF pellets met the quality specifications required by international marketing standards, except for the average diameter.Keywords: densified materials, energetic potential, panels. DOI:


Author(s):  
V. Dhivakhar ◽  
Maju Varghese ◽  
Keerthi M. S. ◽  
S. Kaviya

About 40% of the Global Electricity produced is fuelled by coal. Although Coal has various advantages like good High Heating Value, easy availability etc., it also has various disadvantages. Green House Gas Released from Coal Thermal Power Plants is the single major contributor to Global warming. Coal is also nonrenewable. Hence it is important to analyze the viability of potential alternatives and reduce the usage of coal. In this assessment, various potential replacements of coal have been analyzed based on their High heating value (HHV) and their Global Warming Potential. The Global warming Potential (GWP) of the assessed fuels have been calculated by the Respiratory Quotient (RQ) Factor method. Hence a direct comparison between Coal and other replacements based on their HHV and GWP has been performed.


Sign in / Sign up

Export Citation Format

Share Document