scholarly journals Fuel Characterization Study and Simulation of Dewatered Domestic Wastewater Sludge Gasification Using ASPEN Plus

2019 ◽  
Vol 2 (3) ◽  
pp. 954-963
Author(s):  
Aboubaker AbdallaIbrahim Ali ◽  
Hüseyin Akilli

Dewatered domestic wastewater sludge (DDWS) is one of the largest contributors of waste material in the world, and it immediately elevates local environmental problems, especially in the urban area. The conversion of this material into a usable form of green energy, such as syngas through gasification, can be a vital solution. Hence, this method not only solves the environmental issues related to DDWS disposal but also participates as an energy source. To achieve this goal, the essential fuel characterization, which includes initial moisture content, high heating value, ultimate analysis, and proximate analysis, were carried out to assess the potential energy in DDWS. Due to the high expenses of the successful design of the gasifier reactor, and there are no efficient methods to predict the gasification performance, the model of the DDWS gasification process using ASPEN Plus software was developed. As ASPEN Plus software does not contain a built-in gasifier reactor model, a combination of various reactors is used to simulate the gasification processes. These processes were divided out into two stages. In the first stage, DDWS was decomposed into its element by specifying yield distribution. By using Gibbs free energy minimization approach, the gasification reactions were modeled. The current model was validated with the previously published work. From the characterization findings, DDWS showed high initial moisture content 84.64% and potential energy with 16.84 MJ/kg high heating value. The proximate analysis based on the dry base of DDWS exhibited that more than 55.42 % of their mass is composed of volatile materials, and ash content is found to be less than 25.79%.

2018 ◽  
Vol 225 ◽  
pp. 03008
Author(s):  
M.S. Zakaria ◽  
Suhaimi Hassan ◽  
M.N. Faizairi

Domestic Wastewater Sludge (DWS) is considered as one of the largest contributor waste in Malaysia. Converting this waste as an alternative fuel can eliminate the disposal problem and reduce the environmental issue that causes by this waste. However, the initial moisture content in DWS is around 90% and in order to convert this waste into useful solid fuel, the moisture content of this waste must be reduced to 20% and below. Thermal dryer is one of the efficient dryer for the DWS that is capable of drying the huge volume of DWS in a short period of time. This study focused on the energy usage by the thermal dryer with several operating condition and the effect to the Higher Heating Value (HHV) of DWS. Based on the study, the higher heating value of DWS obtained from the experimental of thermal dryer found to be comparable with the results obtained from other biomass types which is around 9-15.86 MJ/kg. After analysis and comparison of the energy from the dried DWS and energy consumed by the dryer, the best operating condition of the thermal dryer was at 275 kW of power rating with speed of 30 and 10 rpm (revolution per minute) of the screw conveyor in the feeder and dryer respectively.


FLORESTA ◽  
2015 ◽  
Vol 45 (4) ◽  
pp. 713 ◽  
Author(s):  
Diego Aleixo Silva ◽  
Gabriela Tami Nakashima ◽  
João Lúcio Barros ◽  
Alessandra Luzia Da Roz ◽  
Fabio Minoru Yamaji

O objetivo deste trabalho foi caracterizar a produção de briquetes feita a partir de quatro diferentes biomassas residuais. Foram utilizados os resíduos de serragem de Eucalyptus sp, serragem de Pinus sp, bagaço de cana-de-açúcar (Saccharum officinarum L.) e palha de cana-de-açúcar. Os resíduos foram tratados para que obtivessem 12% de umidade e uma granulometria inferior a 1,70 mm. Foram produzidos 15 briquetes para cada um dos quatro tratamentos. A pressão utilizada foi de 1250 kgf.cm-2 durante 30 segundos. Os briquetes obtiveram densidades que oscilaram 0,88 a 1,11 g.cm-3. Isto representou uma faixa de 5 a 14 vezes a menos de ocupação de volume para uma mesma quantidade de massa. O poder calorifico foi de 19.180 J.kg-1 e 20.315 J.kg-1 para as serragens de eucalipto e pinus respectivamente. Para o bagaço e palha de cana os valores foram de 18.541 J.kg-1 e 15.628 J.kg-1. A palha da cana-de-açúcar apresentou um teor de cinzas de 12%. As expansões dos tratamentos oscilaram 4 a 9% e as resistências mecânicas variaram de 1,215 MPa à 0,270 MPa. Todos os briquetes se mostraram resistentes para um empilhamento superior a 10 m de altura. O procedimento adotado pode ajudar a diminuir o espaço de estocagem e de transporte. AbstractThis research aims to characterize the production of briquettes from four different biomasses. We used residues such as Eucalyptus sp sawdust, Pinus sp sawdust , sugarcane bagasse (Saccharum officinarum L.) and sugarcane straw. The residues were treated to obtain 12% moisture content and particle size less than 1.70 mm. We produced 15 briquettes for each treatment. The pressure used was 1250 kgf.cm-2 for 30 seconds. The briquettes obtained densities ranged from 0.88 to 1.11 g.cm-3. This represented a range of 5 to 14 times less volume occupancy for the same amount of mass. The high heating value (HHV) was 19,180 J.kg-1 and 20,315 J.kg-1 for eucalyptus and pine sawdust respectively. The HHV for the bagasse was 18,541 J.kg-1 and for straw was 15,628 J.kg-1. The straw presented an ash content of 12%. The expansions of the treatments ranged 4 to 9% and mechanical resistances ranging from 1,215 MPa to 0,270 MPa. All briquettes were resistant to a higher stacking to 10 m high. The methods can help to decrease the space of storage and transport.Keywords: Waste; biofuel; energy; compression; stacking.


2021 ◽  
Vol 882 (1) ◽  
pp. 012029
Author(s):  
M A Rahmanta

Abstract The Coal Water Slurry (CWS) technology increases the calorific value and changes the phase of coal from solid to liquid. The CWS Plant with a coal capacity of 1.4 t/hour located at Karawang, West Java converts lignite coal to CWS. Coal undergoes pulverizing, upgrading, and slurry-making processes to become CWS. Pulverization is the process of refining coal size into 200 mesh. The upgrading process is through reducing the moisture content in heat exchangers (HE). It occurs in HE where the coal is pressurized to 15 MPa and the temperature is maintained at 330 0C for 30 minutes. The research objective was to determine the CWS characteristics of the South Sumatra Pendopo lignite coal. The method used is through testing where the Pendopo coal is converted into CWS at the CWS Plant. The result shows that Pendopo coal which has a heating value of High Heating Value (HHV) 2,725.00 kCal/kg As Received (AR) has an increase in HHV heating value of 3,218.00 kcal/kg AR when it becomes CWS. The total moisture content of Pendopo coal has decreased from 49.36% to 44.58% when it becomes CWS. The fixed carbon content of Pendopo coal increased from 19.78% AR to 24.01% AR.


2019 ◽  
Vol 693 (1) ◽  
pp. 7-17
Author(s):  
Krissina Camilla Molinari ◽  
Washington Luiz Esteves Magalhães ◽  
Agnieszka Pawlicka ◽  
Gilmara de Oliveira Machado

Around the world, one of the significant difficulties confronting numerous countries is the energy crisis and proper disposal of waste. 'Jalgaon' a city in the state of Maharashtra (India) is referred to as 'Banana City' as it produces half of the state's Banana production. In Jalgaon, banana cultivation is carried out in about 45,000 hectares of land. Here, the accumulation of waste roots post-harvest, about 67000 MT, is huge, creating environmental issues. The open dumping of waste roots occupies a huge problem limiting the valuable space in the field. The purpose of this study was to explore an appropriate method to dispose of the banana root waste efficiently. No study has been reported yet to effectively use banana root waste as fuel pellet. In this work, pellets were made out of the banana root waste, without additional binder, and the combustion properties such as proximate analysis, ultimate analysis, high heating value, and thermal decomposition behaviour were studied. The high heating value of the pellets was observed as 16.29 MJ/kg. The results of ash elemental analysis by Scanning Electron Microscope (SEM) equipped with an Energy Dispersive X-ray Spectroscopy (EDX) detector showed that ash can be used as adsorbent and fertiliser. The work attempts to convert the banana root into a fuel of good commercial value thereby addressing the waste disposal issue after harvest.


2018 ◽  
Vol 37 (1) ◽  
pp. 544-557 ◽  
Author(s):  
Alejandra Saffe ◽  
Anabel Fernandez ◽  
Germán Mazza ◽  
Rosa Rodriguez

The use of energy from biomass is becoming more common worldwide. This energy source has several benefits that promote its acceptance; it is bio-renewable, non-toxic and biodegradable. To predict its behavior as a fuel during thermal treatment, its characterization is necessary. The experimental determination of ultimate analysis data requires special instrumentation, while proximate analysis data can be obtained easily by using common equipment but, the required time is high. In this work, a methodology is applied based on thermogravimetric analysis, curves deconvolution and empirical correlations for characterizing different regional agro-industrial wastes to determine the high heating value, the contents of moisture, volatiles matter, fixed carbon, ash, carbon, hydrogen, oxygen, lignin, cellulose and hemicellulose. The obtained results are similar to those using standard techniques, showing the accuracy of proposed method and its wide application range. This methodology allows to determine the main parameters required for industrial operation in only in one step, saving time.


Author(s):  
V. Dhivakhar ◽  
Maju Varghese ◽  
Keerthi M. S. ◽  
S. Kaviya

About 40% of the Global Electricity produced is fuelled by coal. Although Coal has various advantages like good High Heating Value, easy availability etc., it also has various disadvantages. Green House Gas Released from Coal Thermal Power Plants is the single major contributor to Global warming. Coal is also nonrenewable. Hence it is important to analyze the viability of potential alternatives and reduce the usage of coal. In this assessment, various potential replacements of coal have been analyzed based on their High heating value (HHV) and their Global Warming Potential. The Global warming Potential (GWP) of the assessed fuels have been calculated by the Respiratory Quotient (RQ) Factor method. Hence a direct comparison between Coal and other replacements based on their HHV and GWP has been performed.


Author(s):  
Sahar Safarianbana ◽  
Runar Unnthorsson ◽  
Christiaan Richter

Abstract Wood and paper residues are usually processed as wastes, but they can also be used to produce electrical and thermal energy through processes of thermochemical conversion of gasification. This study proposes a new steady state simulation model for down draft waste biomass gasification developed using the commercial software Aspen Plus for optimization of the gasifier performance. The model was validated by comparison with experimental data obtained from six different operation conditions. This model is used for analysis of gasification performance of wood chips and mixed paper wastes. The operating parameters of temperature and moisture content (MC) have been varied over wide range and their effect on the high heating value (HHV) of syngas and cold gas efficiency (CGE) were investigated. The results show that increasing the temperature improves the gasifier performance and it increases the production of CO and H2 which leads to higher LHV and CGE. However, an increase in moisture content reduces gasifier performance and results in low CGE.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-10
Author(s):  
Shafwan Amrullah

Desa saat ini didorong menjadi desa mandiri, baik dalam bidang energi maupun ekonomi dengan mengimplementasikan energi terbarukan untuk meningkatkan kemandirian energi sebagai salah satu langkah meningkatkan ekonomi masyarakat. Penelitian ini bertujuan untuk menganalisis potensi penggunaan energi terbarukan seperti Pembangkit Listrik Tenaga Bayu (PLTB), Pembangkit Listrik Tenaga Surya (PLTS), Pembangkit Listrik Tenaga Air (PLTA), dan Konversi Energi Gasifikasi di desa Lendang Nangka, Kabupaten Lombok Timur. Penelitian dilakukan dengan pengumpulan data baik dari BMKG dan pengujian secara langsung menggunakan alat Air Flow Anemometer GM8902 untuk mengetahui kecepatan angin dan DIGITAL TECHNOMETER LX-1010B untuk mengetahui intensitas cahaya matahari. Selain itu dilakukan wawancara kepada pengusaha kecil dan menengah untuk mengetahui penggunaan energi dalam menyokong proses produksinya. Hasil dari penelitian menunjukkan bahwa potensi PLTB yang dapat diemplementasikan adalah PLTB sekala kecil dengan daya sekitar 23,4-632,88 kWh/turbin. Untuk potensi PLTS menghasilkan daya sebesar 410-566 kWh per meter persegi panel surya. Untuk potensi PLTA, turbin yang cocok adalah turbin ukuran kecil dengan potensi daya sekitar 0,3024-2,2194 kWh. Sedangkan untuk potensi penggunaan converter energi jenis gasifikasi dapat dilakukan untuk mengurangi penggunaan bahan bakar tidak terbarukan sekaligus menghemat biaya porduksi. Sebab, nilai High Heating Value gas sintetik yang dihasilkan 1,7 kali lebih besar daripada pembakaran langsung dengan kayu.


2019 ◽  
Vol 6 (2) ◽  
pp. 33 ◽  
Author(s):  
Md Sumon Reza ◽  
Ashfaq Ahmed ◽  
Wahyu Caesarendra ◽  
Muhammad S. Abu Bakar ◽  
Shahriar Shams ◽  
...  

To evaluate the possibilities for biofuel and bioenergy production Acacia Holosericea, which is an invasive plant available in Brunei Darussalam, was investigated. Proximate analysis of Acacia Holosericea shows that the moisture content, volatile matters, fixed carbon, and ash contents were 9.56%, 65.12%, 21.21%, and 3.91%, respectively. Ultimate analysis shows carbon, hydrogen, and nitrogen as 44.03%, 5.67%, and 0.25%, respectively. The thermogravimetric analysis (TGA) results have shown that maximum weight loss occurred for this biomass at 357 °C for pyrolysis and 287 °C for combustion conditions. Low moisture content (<10%), high hydrogen content, and higher heating value (about 18.13 MJ/kg) makes this species a potential biomass. The production of bio-char, bio-oil, and biogas from Acacia Holosericea was found 34.45%, 32.56%, 33.09% for 500 °C with a heating rate 5 °C/min and 25.81%, 37.61%, 36.58% with a heating rate 10 °C/min, respectively, in this research. From Fourier transform infrared (FTIR) spectroscopy it was shown that a strong C–H, C–O, and C=C bond exists in the bio-char of the sample.


Sign in / Sign up

Export Citation Format

Share Document