scholarly journals Assessment of human impact on flooding for Thai East coast - gulf basin

2021 ◽  
Vol 884 (1) ◽  
pp. 012028
Author(s):  
Norawit Suwannakarn ◽  
Chanita Duangyiwa ◽  
Ekkamol Vannametee

Abstract Due to a rapid increase in urban and built-up areas, the East Coast – Gulf basin of Thailand faces flood hazards more frequently than in the past. In this study, we aim to assess the effects of building construction on flooding, and any link between them. The FloodMap model is used to simulate flooding in the study area in September 2015. Two flooding scenarios were designed; one based only on land surface elevation and the other one with building construction included on the land surface. According to the result, we found that human construction increases flood hazard in the study areas, particularly flood depth. Flood areas are also found to increase if the human factor is added into the model, but in a lesser extent. With human construction, paved road is found to have the highest flood potential compared to other types of road. Built up areas are more flooded, while flooding extent is almost similar to results from the scenario of no human construction in forest and agricultural areas.

2014 ◽  
Vol 14 (5) ◽  
pp. 1361-1369 ◽  
Author(s):  
G. Tsakiris

Abstract. Natural hazards have caused severe consequences to the natural, modified and human systems in the past. These consequences seem to increase with time due to both the higher intensity of the natural phenomena and the higher value of elements at risk. Among the water-related hazards, flood hazards have the most destructive impacts. The paper presents a new systemic paradigm for the assessment of flood hazard and flood risk in the riverine flood-prone areas. Special emphasis is given to the urban areas with mild terrain and complicated topography, in which 2-D fully dynamic flood modelling is proposed. Further, the EU flood directive is critically reviewed and examples of its implementation are presented. Some critical points in the flood directive implementation are also highlighted.


Author(s):  
Kishor Dandapat ◽  
Gopal K. Panda

From the beginning of civilisation, human beings have preferred living on the river banks which have been the most vulnerable areas of flood hazards and consequent disasters. During the monsoon period, in many developing countries of south-east Asia, flood hazards and disasters have been a serious challenge for their development. Most of the rivers exceed their normal channel capacity attaining the flood stage and frequently overflow their banks, causing great havoc to the life and property of the people. Flooding is a very serious problem in many districts of West Bengal. The prime concern of delineation of flood-prone areas is to regulate the land use in the flood-prone areas to restrict damage potential and also mitigate the negative effects of floods on people and the economy. In a regulated way, flood-prone areas are required to be developed. Because, on one hand, it is to be ensured that existing hazard and flood damage potential do not increase and new developmental works become a step towards mitigation of disaster risk. In a perspective view, the demarcation and identification of flood-prone areas of different magnitudes, frequencies and return periods on a large-scale map seem to have great importance. Satellite-derived flood maps from 2007 to 2016 have been applied to form a flood frequency map and the same as a group of flood depth maps has been employed to produce the Flood Damage Map for depth data of flood. Finally, the modelling of flood hazards has been directed by envisaging amalgamation of Flood Depth and Flood Affected Frequency. Then the final flood hazard map amalgamated with population and housing data has been used to ascertain the flood disclosure for these two components. Flood hazard analysis in the study area revealed that 24% of the population has been located in high flood hazard zones, where 39% of human settlements are located in different flood hazard zones.


2014 ◽  
Vol 2 (1) ◽  
pp. 261-286 ◽  
Author(s):  
G. Tsakiris

Abstract. Natural hazards have caused severe consequences to the natural, modified and human systems, in the past. These consequences seem to increase with time due to both higher intensity of the natural phenomena and higher value of elements at risk. Among the water related hazards flood hazards have the most destructive impacts. The paper presents a new systemic paradigm for the assessment of flood hazard and flood risk in the riverine flood prone areas. Special emphasis is given to the urban areas with mild terrain and complicated topography, in which 2-D fully dynamic flood modelling is proposed. Further the EU flood directive is critically reviewed and examples of its implementation are presented. Some critical points in the flood directive implementation are also highlighted.


2021 ◽  
Vol 13 (18) ◽  
pp. 10259
Author(s):  
Lariyah Mohd Sidek ◽  
Aminah Shakirah Jaafar ◽  
Wan Hazdy Azad Wan Abdul Majid ◽  
Hidayah Basri ◽  
Mohammad Marufuzzaman ◽  
...  

Malaysia, being a tropical country located near the equatorial doldrums, experiences the annual occurrence of flood hazards due to monsoon rainfalls and urban development. In recent years, environmental policies in the country have shifted towards sustainable flood risk management. As part of the development of flood forecasting and warning systems, this study presented the urban flood simulation using InfoWorks ICM hydrological−hydraulic modeling of the Damansara catchment as a case study. The response of catchments to the rainfall was modeled using the probability distributed moisture (PDM) model due to its capability for large catchments with long-term runoff prediction. The interferometric synthetic aperture radar (IFSAR) technique was used to obtain high-resolution digital terrain model (DTM) data. The calibrated and validated model was first applied to investigate the effectiveness of the existing regional ponds on flood mitigation. For a 100-year flood, the extent of flooded areas decreased from 12.41 km2 to 3.61 km2 as a result of 64-ha ponds in the catchment, which is equivalent to a 71% reduction. The flood hazard maps were then generated based on several average recurrence intervals (ARIs) and uniform rainfall depths, and the results showed that both parameters had significant influences on the magnitude of flooding in terms of flood depth and extent. These findings are important for understanding urban flood vulnerability and resilience, which could help in sustainable management planning to deal with urban flooding issues.


2012 ◽  
Vol 14 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Longfei BING ◽  
Hongbo SU ◽  
Quanqin SHAO ◽  
Jiyuan LIU
Keyword(s):  

2019 ◽  
Vol 2 (1) ◽  
pp. 41-52
Author(s):  
Nitin Mundhe

Floods are natural risk with a very high frequency, which causes to environmental, social, economic and human losses. The floods in the town happen mainly due to human made activities about the blockage of natural drainage, haphazard construction of roads, building, and high rainfall intensity. Detailed maps showing flood vulnerability areas are helpful in management of flood hazards. Therefore, present research focused on identifying flood vulnerability zones in the Pune City using multi-criteria decision-making approach in Geographical Information System (GIS) and inputs from remotely sensed imageries. Other input data considered for preparing base maps are census details, City maps, and fieldworks. The Pune City classified in to four flood vulnerability classes essential for flood risk management. About 5 per cent area shows high vulnerability for floods in localities namely Wakdewadi, some part of the Shivajinagar, Sangamwadi, Aundh, and Baner with high risk.


2021 ◽  
Vol 13 (14) ◽  
pp. 2712
Author(s):  
Marta Ciazela ◽  
Jakub Ciazela

Variations in climatic pattern due to boundary layer processes at the topoclimatic scale are critical for ecosystems and human activity, including agriculture, fruit harvesting, and animal husbandry. Here, a new method for topoclimate mapping based on land surface temperature (LST) computed from the brightness temperature of Landsat ETM+ thermal bands (band6) is presented. The study was conducted in a coastal lowland area with glacial landforms (Wolin Island). The method presented is universal for various areas, and is based on freely available remote sensing data. The topoclimatic typology obtained was compared to the classical one based on meteorological data. It was proven to show a good sensitivity to changes in topoclimatic conditions (demonstrated by changes in LST distribution) even in flat, agricultural areas with only small variations in topography. The technique will hopefully prove to be a convenient and relatively fast tool that can improve the topoclimatic classification of other regions. It could be applied by local authorities and farmer associations for optimizing agricultural production.


2021 ◽  
Vol 13 (4) ◽  
pp. 655
Author(s):  
Animesh Choudhury ◽  
Avinash Chand Yadav ◽  
Stefania Bonafoni

The Himalayan region is one of the most crucial mountain systems across the globe, which has significant importance in terms of the largest depository of snow and glaciers for fresh water supply, river runoff, hydropower, rich biodiversity, climate, and many more socioeconomic developments. This region directly or indirectly affects millions of lives and their livelihoods but has been considered one of the most climatically sensitive parts of the world. This study investigates the spatiotemporal variation in maximum extent of snow cover area (SCA) and its response to temperature, precipitation, and elevation over the northwest Himalaya (NWH) during 2000–2019. The analysis uses Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra 8-day composite snow Cover product (MOD10A2), MODIS/Terra/V6 daily land surface temperature product (MOD11A1), Climate Hazards Infrared Precipitation with Station data (CHIRPS) precipitation product, and Shuttle Radar Topography Mission (SRTM) DEM product for the investigation. Modified Mann-Kendall (mMK) test and Spearman’s correlation methods were employed to examine the trends and the interrelationships between SCA and climatic parameters. Results indicate a significant increasing trend in annual mean SCA (663.88 km2/year) between 2000 and 2019. The seasonal and monthly analyses were also carried out for the study region. The Zone-wise analysis showed that the lower Himalaya (184.5 km2/year) and the middle Himalaya (232.1 km2/year) revealed significant increasing mean annual SCA trends. In contrast, the upper Himalaya showed no trend during the study period over the NWH region. Statistically significant negative correlation (−0.81) was observed between annual SCA and temperature, whereas a nonsignificant positive correlation (0.47) existed between annual SCA and precipitation in the past 20 years. It was also noticed that the SCA variability over the past 20 years has mainly been driven by temperature, whereas the influence of precipitation has been limited. A decline in average annual temperature (−0.039 °C/year) and a rise in precipitation (24.56 mm/year) was detected over the region. The results indicate that climate plays a vital role in controlling the SCA over the NWH region. The maximum and minimum snow cover frequency (SCF) was observed during the winter (74.42%) and monsoon (46.01%) season, respectively, while the average SCF was recorded to be 59.11% during the study period. Of the SCA, 54.81% had a SCF above 60% and could be considered as the perennial snow. The elevation-based analysis showed that 84% of the upper Himalaya (UH) experienced perennial snow, while the seasonal snow mostly dominated over the lower Himalaya (LH) and the middle Himalaya (MH).


2017 ◽  
Vol 114 (37) ◽  
pp. 9785-9790 ◽  
Author(s):  
Hamed R. Moftakhari ◽  
Gianfausto Salvadori ◽  
Amir AghaKouchak ◽  
Brett F. Sanders ◽  
Richard A. Matthew

Sea level rise (SLR), a well-documented and urgent aspect of anthropogenic global warming, threatens population and assets located in low-lying coastal regions all around the world. Common flood hazard assessment practices typically account for one driver at a time (e.g., either fluvial flooding only or ocean flooding only), whereas coastal cities vulnerable to SLR are at risk for flooding from multiple drivers (e.g., extreme coastal high tide, storm surge, and river flow). Here, we propose a bivariate flood hazard assessment approach that accounts for compound flooding from river flow and coastal water level, and we show that a univariate approach may not appropriately characterize the flood hazard if there are compounding effects. Using copulas and bivariate dependence analysis, we also quantify the increases in failure probabilities for 2030 and 2050 caused by SLR under representative concentration pathways 4.5 and 8.5. Additionally, the increase in failure probability is shown to be strongly affected by compounding effects. The proposed failure probability method offers an innovative tool for assessing compounding flood hazards in a warming climate.


Author(s):  
A. J. Adeloye ◽  
F. D. Mwale ◽  
Z. Dulanya

Abstract. In response to the increasing frequency and economic damages of natural disasters globally, disaster risk management has evolved to incorporate risk assessments that are multi-dimensional, integrated and metric-based. This is to support knowledge-based decision making and hence sustainable risk reduction. In Malawi and most of Sub-Saharan Africa (SSA), however, flood risk studies remain focussed on understanding causation, impacts, perceptions and coping and adaptation measures. Using the IPCC Framework, this study has quantified and profiled risk to flooding of rural, subsistent communities in the Lower Shire Valley, Malawi. Flood risk was obtained by integrating hazard and vulnerability. Flood hazard was characterised in terms of flood depth and inundation area obtained through hydraulic modelling in the valley with Lisflood-FP, while the vulnerability was indexed through analysis of exposure, susceptibility and capacity that were linked to social, economic, environmental and physical perspectives. Data on these were collected through structured interviews of the communities. The implementation of the entire analysis within GIS enabled the visualisation of spatial variability in flood risk in the valley. The results show predominantly medium levels in hazardousness, vulnerability and risk. The vulnerability is dominated by a high to very high susceptibility. Economic and physical capacities tend to be predominantly low but social capacity is significantly high, resulting in overall medium levels of capacity-induced vulnerability. Exposure manifests as medium. The vulnerability and risk showed marginal spatial variability. The paper concludes with recommendations on how these outcomes could inform policy interventions in the Valley.


Sign in / Sign up

Export Citation Format

Share Document