scholarly journals Mineralization in the andesitic lava from Kildyam volcanic complex, central Yakutia, Russia

2021 ◽  
Vol 906 (1) ◽  
pp. 012006
Author(s):  
Aleksey Kostin

Abstract This contribution presents the first detailed analysis of a new volcanic succession of olivine-pyroxenites, andesite, and dacite discovered in the Kildyam Late Jurassic complex in Central Yakutia. Petrographic and microprobe studies confirmed the liquid immiscibility in silicate melts during crystallization. Immiscible liquids are preserved as globules of one glass in another in andesites and as melted inclusions of native iron in matrix, clinopyroxene and plagioclase phenocrysts. Our analyses reveal the complex textural relationships between silicates and Fe-oxides, native iron and (Cu, Pb, Ag and Au)-rich phases, and provide unequivocal textural evidences, not observed previously. Purpose of this research is to preserve a very important data on IO (Iron Oxide) or IOCG (Iron Oxide Copper Gold) mineralization. Obtained results support occurrence and diverse of gold, silver, copper and lead minerals in magnetite lavas. During the early stage of fine-grained subvolcanic olivine-clinopyroxenite end pyrrhotite, globular igneous sulfides is a first proposed style of economic deposit formation. The second proposed style of economic mineralization in Kildyam is to be a magnetite-bearing lava; iron enrichment of the melilitic melt phase, followed by iron depletion and silica enrichment. The vesicle-hosted alloys and sulfides provide significant new data on metal transport and precipitation from high-temperature magmatic vapors. During syneruptive vapor phase exsolution, volatile metals (Cu-Zn, Fe-Al-Cu, Ni-Fe-Cu-Sn) and Ag-Cu-sulfides contribute to the formation of economic concentrations. Major conclusions contribute to 3-step genetic model. (1) Early-formed magmatic minerals led to partial dissolution of olivine-clinopyroxenite and their enrichment in Cu, Co and Ni relative to other metals, while troilite globules droplets grew.(2) First stage of division into two immiscible silicate and sulfide melt liquids (a) K-rich dacitic and rhyolithic glass, and (b) vesicles of heavy sulfide minerals with a large segregations and drops of native iron. (3) Lava of fused magnetite crystals and voids enriched in silver and gold, and (b) globular disseminated chalcopyrite in mineralized melilitic rocks.

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 103
Author(s):  
Nikolai Berdnikov ◽  
Victor Nevstruev ◽  
Pavel Kepezhinskas ◽  
Ivan Astapov ◽  
Natalia Konovalova

While gold partitioning into hydrothermal fluids responsible for the formation of porphyry and epithermal deposits is currently well understood, its behavior during the differentiation of metal-rich silicate melts is still subject of an intense scientific debate. Typically, gold is scavenged into sulfides during crustal fractionation of sulfur-rich mafic to intermediate magmas and development of native forms and alloys of this important precious metal in igneous rocks and associated ores are still poorly documented. We present new data on gold (Cu-Ag-Au, Ni-Cu-Zn-Ag-Au, Ti-Cu-Ag-Au, Ag-Au) alloys from iron oxide deposits in the Lesser Khingan Range (LKR) of the Russian Far East. Gold alloy particles are from 10 to 100 µm in size and irregular to spherical in shape. Gold spherules were formed through silicate-metal liquid immiscibility and then injected into fissures surrounding the ascending melt column, or emplaced through a volcanic eruption. Presence of globular (occasionally with meniscus-like textures) Cu-O micro-inclusions in Cu-Ag-Au spherules confirms their crystallization from a metal melt via extremely fast cooling. Irregularly shaped Cu-Ag-Au particles were formed through hydrothermal alteration of gold-bearing volcanic rocks and ores. Association of primarily liquid Cu-Ag-Au spherules with iron-oxide mineralization in the LKR indicates possible involvement of silicate-metallic immiscibility and explosive volcanism in the formation of the Andean-type iron oxide gold-copper (IOCG) and related copper-gold porphyry deposits in the deeper parts of sub-volcanic epithermal systems. Thus, formation of gold alloys in deep roots of arc volcanoes may serve as a precursor and an exploration guide for high-grade epithermal gold mineralization at shallow structural levels of hydrothermal-volcanic environments in subduction zones.


2021 ◽  
Vol 40 (3) ◽  
pp. 67-84
Author(s):  
N.V. Berdnikov ◽  
◽  
V.G. Nevstruev ◽  
P.K. Kepezhinskas ◽  
V.O. Krutikova ◽  
...  

Iron-oxide ores and pyroclastics from the Kostenginskoye deposit in the Malyi Khingan (Russian Far East) contain numerous silicate, iron-oxide, and copper-gold-silver microspherules. Silicate spherules are composed of immiscible iron- and silica-rich glasses, gas cavities and mineral inclusions. Iron-oxide spherules include magnetite with minor ilmenite and Fe-rich silicate glass. Copper-gold-silver spherules contain inclusions predominantly of copper oxide compositions. The studied microspherules are considered to have formed during the rapid ascent of metal-silicate melts from depth and their degassing controlled by liquid immiscibility differentiation. The paper discusses the possible volcanic origin of iron-oxide ores and the associated noble metal mineralization for the deposits of this type.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


2021 ◽  
pp. geochem2021-074
Author(s):  
Godson Godfray

Successful gold exploration projects depend on a piece of clear information on the association between gold, trace elements, and mineralization controlling factors. The use of soil geochemistry has been an important tool in pinpointing exploration targets during the early stage of exploration. This study aimed to establish the gold distribution, the elemental association between gold and its pathfinder elements such as Cu, Zn, Ag, Ni, Co, Mn, Fe, Cd, V, Cr, Ti, Sc, In, and Se and identify lithologies contributing to the overlying residual soils. From cluster analysis, a high similarity level of 53.93% has been shown with Ag, Cd, and Se at a distance level of 0.92. Au and Se have a similarity level of 65.87% and a distance level of 0.68, hence is proposed to be the most promising pathfinder element. PCA, FA, and the Pearson's correlation matrix of transformed data of V, Cu, Ni, Fe, Mn, Cr, and Co and a stronger correlation between Pb and U, Th, Na, K, Sn, Y, Ta and Be shows that source gold mineralization might be associated with both hornblende gneisses interlayered with quartzite, tonalite, and tonalitic orthogneiss. From the contour map and gridded map of Au and its pathfinder elements, it has been noted that their anomalies and target generated are localized in the Northern part of the area. The targets trend ESE to WNW nearly parallel to the shear zones as a controlling factor of Au mineralization emplacement.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5721965


Author(s):  
V. A. Stepanov ◽  

Information on the geological and isotopic age of the Kubaka gold-silver deposit in the Omolon middle massif in the North-East of Russia is presented. It has been established that the Kubaka deposit geological age lies in between the Late Devonian age of the Kedon series volcanites, containing the gold-silver mineralization, and the Early Carboniferous age of the Korbinsky suite terrigenous rocks, overlapping the volcanites and the mineralization. The post-ore nature of the Omolon complex dykes, which produce no significant impact on the distribution of gold mineralization in ore bodies, is shown. According to isotope dating, the following stages of the Kubaka deposit formation are distinguished: the accumulation of the Kubaka suite tuffs (369 Ma); the introduction of subvolcanic intrusions (344 and 337 Ma); the formation of ore metasomatites (335±5 Ma); the formation of gold-silver mineralization (330 and 334 - 324 Ma); the introduction of post-ore dikes (179±8 - 176±10 Ma).


2015 ◽  
Vol 112 (7) ◽  
pp. E796-E805 ◽  
Author(s):  
Fabrice Dabertrand ◽  
Christel Krøigaard ◽  
Adrian D. Bonev ◽  
Emmanuel Cognat ◽  
Thomas Dalsgaard ◽  
...  

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), caused by dominant mutations in the NOTCH3 receptor in vascular smooth muscle, is a genetic paradigm of small vessel disease (SVD) of the brain. Recent studies using transgenic (Tg)Notch3R169C mice, a genetic model of CADASIL, revealed functional defects in cerebral (pial) arteries on the surface of the brain at an early stage of disease progression. Here, using parenchymal arterioles (PAs) from within the brain, we determined the molecular mechanism underlying the early functional deficits associated with this Notch3 mutation. At physiological pressure (40 mmHg), smooth muscle membrane potential depolarization and constriction to pressure (myogenic tone) were blunted in PAs from TgNotch3R169C mice. This effect was associated with an ∼60% increase in the number of voltage-gated potassium (KV) channels, which oppose pressure-induced depolarization. Inhibition of KV1 channels with 4-aminopyridine (4-AP) or treatment with the epidermal growth factor receptor agonist heparin-binding EGF (HB-EGF), which promotes KV1 channel endocytosis, reduced KV current density and restored myogenic responses in PAs from TgNotch3R169C mice, whereas pharmacological inhibition of other major vasodilatory influences had no effect. KV1 currents and myogenic responses were similarly altered in pial arteries from TgNotch3R169C mice, but not in mesenteric arteries. Interestingly, HB-EGF had no effect on mesenteric arteries, suggesting a possible mechanistic basis for the exclusive cerebrovascular manifestation of CADASIL. Collectively, our results indicate that increasing the number of KV1 channels in cerebral smooth muscle produces a mutant vascular phenotype akin to a channelopathy in a genetic model of SVD.


2021 ◽  
Vol 62 (1) ◽  
pp. 134-143
Author(s):  
A.A. Sorokin ◽  
A.Yu. Kadashnikova ◽  
A.V. Ponomarchuk ◽  
A.V. Travin ◽  
V.A. Ponomarchuk

Abstract ––We present results of geochronological studies of rocks from different igneous complexes and of hydrothermally altered volcanics with Au–Ag mineralization from the Pokrovskoe deposit. The age of the ore-hosting granites of the Sergeevsky pluton of the Upper Amur complex is estimated at ~129 Ma. The primary age of dacites of a sill-like body is within 128–125 Ma and is close to the age of volcanics of the Taldan complex. Propylitization processes superposed on these dacites are dated at ~122–119 Ma. Taking into account the commercial contents of gold and silver in these rocks, we believe that the age of the hosted orebodies is in the same interval. The period 122–119 Ma is also the time of formation of the Gal’ka volcanic complex in the Umlekan volcanic zone, which was accompanied by granitoid magmatism. This suggests that the formation of the Pokrovskoe deposit was associated with the accumulation of the Gal’ka complex.


SEG Discovery ◽  
1999 ◽  
pp. 1-21
Author(s):  
MOIRA SMITH ◽  
JOHN F.H. THOMPSON ◽  
JASON BRESSLER ◽  
PAUL LAYER ◽  
JAMES K. MORTENSEN ◽  
...  

ABSTRACT The Liese zone is a recently discovered high-grade gold deposit on the Pogo claims, approximately 90 miles (145 km) southeast of Fairbanks. A conservative geologic resource for the Liese zone is 9.98 million tons at an average grade of 0.52 oz/t, for a total of 5.2 million contained ounces. The region is underlain by highly deformed, amphibolite-grade paragneiss and minor orthogneiss of the Late Proterozoic(?) to middle Paleozoic Yukon-Tanana terrane, which has been intruded by Cretaceous felsic granitoid bodies thought to be related to gold mineralization in the Fairbanks area and elsewhere along the Tintina gold belt. The Liese zone is hosted primarily in gneiss, and lies approximately 1.5 km south of the southern margin of the Late Cretaceous Goodpaster batholith. Mineralization occurs in three or more tabular, gently dipping quartz bodies, designated L1 (uppermost), L2, and L3 (lowermost). The thickness of the quartz bodies ranges from 1 to 20 m, averaging approximately 7 m. The quartz contains approximately 3 percent ore minerals, including pyrite, pyrrhotite, loellingite, arsenopyrite, chalcopyrite, bismuthinite, various Ag-Pb-Bi ± S minerals, maldonite, native bismuth, and native gold. Early biotite and later quartz-sericite-stockwork and sericite-dolomite alteration are spatially associated with the Liese zone, which shows characteristics of both vein and replacement styles of mineralization. Geochemical data indicate a strong correlation between gold and bismuth, and weaker correlations between gold, silver, and arsenic. Based on U-Pb dating of intrusive rocks, the Liese zone was formed between 107 and 94.5 m.y. ago, although 40Ar/39Ar cooling ages on alteration minerals return younger ages of 91 Ma, suggesting a protracted or multiphase thermal history. The Liese zone may represent a deep-seated manifestation of the "intrusion-related" gold deposit type.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 475
Author(s):  
Jihui Liu ◽  
Yaqiang Yuan ◽  
Junhong Zhang ◽  
Zhijun He ◽  
Yaowei Yu

In order to systematically elucidate the combustion performance of fuel during sintering, this paper explores the influence of three factors, namely coal substitution for coke, quasi-particle structure and the coupling effect with reduction and oxidation of iron oxide, on fuel combustion characteristics, and carries out the kinetic calculation of monomer blended fuel (MBF) and quasi-granular fuel (QPF). The results show that replacing coke powder with anthracite can accelerate the whole combustion process. MBF and QPF are more consistent with the combustion law of the double-parallel random pore model. Although the quasi-particle structure increases the apparent activation energy of fuel combustion, it can also produce a heat storage effect on fuel particles, improve their combustion performance, and reduce the adverse effect of diffusion on the reaction process. In the early stage of reaction, the coupling between combustion of volatiles and reduction of iron oxide is obvious. The oxidation of iron oxide will occur again when the combustion reaction of fuel is weakened.


Sign in / Sign up

Export Citation Format

Share Document