scholarly journals Physical and mechanical properties of four wood species from community forests in Binjai Regency, North Sumatra

2021 ◽  
Vol 912 (1) ◽  
pp. 012024
Author(s):  
E Herawati ◽  
R Hartono ◽  
H M M Sinaga

Abstract The fundamental properties of wood are significant to determine the purposes of wood used. This study aims to determine the physical and mechanical properties of four wood species namely terap (Artocarpus odoratissimus ), durian (Durio zibethinus), mindi (Melia azedarach L.), and karet or rubber wood (Hevea brasiliensis Muell. Arg) from community forests in the Binjai Regency, North Sumatra. The physical properties were determined as described in ASTM D4442 and ASTM D2395 while the mechanical properties were conducted according to ASTM D143 and BS 373. The results showed the moisture contents of four wood species ranged 12.66– 15.28%, densities 0.35–0.59 gcm-3, and specific gravities (SG) 0.33–0.55. The compression, tensile and shear strengths parallel to the grain, hardness, modulus of elasticity (MOE), and modulus of rupture (MOR) ranged 20–35 MPa, 36–80 MPa, 6.5–9.7 MPa, 1713–3226 N, 5463– 7497 MPa and 43–71 MPa, respectively. Based on the SG and MOR values, the terap wood is included in strength class IV, while the other woods are in strength class III. Meanwhile, based on the compression strength values, the terap wood is included in strength class V, durian and mindi wood are in strength class IV, while karet wood is in strength class III.

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


2014 ◽  
Vol 962-965 ◽  
pp. 657-662
Author(s):  
Man Ping Xu ◽  
Fei Yan Guo ◽  
Kan Kan Zhou ◽  
Wei Ming Yang

Physical and mechanical properties of 40 kinds of typical wood species in Zhejiang province were studied in this experiment. Density, shrinkage rate, modulus of rupture,bending strength, compression strength, shear strength and hardness were measured and wood species were classified and evaluated by clustering analysis mehtod (CA) combined with membership function (MF) comprehensive evaluation according to these properties. The results showed that the two analysis methods achieved the similar results when screening first class wood which can be conclued that among the 40 kinds of species Quercus fabri, Dalbergia hupeana Cyclobalanopsis glauca, Lithocarpus harlandii and Lagerstroemia indica were the excellent quality. In the mean while the two analysis methods got the similar conclusion that wood properties of Pterocarya stenoptera were the worest as well. In addation, Camptotheca acuminata and Alniphyllum fortune according to CA and Ilex rotunda, and Cyclocarya paliurus according to MF were also the worest qulaity. The study provided powerful references for wood processing, application and directional cultivation of indigenous tree species in Zhejiang.


2020 ◽  
Vol 25 (4) ◽  
pp. 657-663
Author(s):  
Achmad Supriadi ◽  
Deazy Rachmi Trisatya ◽  
Ignasia Maria Sulastiningsih

The objective of this study was to determine the physical and mechanical properties of plywood made of punak (Tetramerista glabra Miq.), meranti bunga (Shorea teysmanniana Dyer ex Brandis), mempisang (Alphonsea spp.), suntai (Palaqium burckii H.J.L.), and pasak linggo (Aglaia argentea Blume). Liquid urea formaldehyde (UF) was used as an adhesive. Data analysis was carried out using a completely randomized design. Results showed that the moisture content and density of plywood produced in this study were around 10.4-10.95% and 0.65 to 0.93 g/cm3, respectively. The modulus of elasticity (MOE) and modulus of rupture (MOR) of plywood produced were between 63.371-123.548 kg/cm2 and 517-1.052 kg/cm2, respectively. It was also found that the tensile strength and bonding strength of the plywood produced were 461.6-1.095 kg/cm2 and 18.97-31.79 kg/cm2, respectively. It was recorded that moisture content and the bonding strength of the plywood produced met the Indonesian National Standard of Plywood. Among others, plywood produced from pasak linggo showed a superior quality. Referring to statistical analysis, it was confirmed that physical and mechanical properties of plywood were significantly affected by wood species, except moisture content. Keywords: mechanical properties, physical properties, plywood, Riau wood species


Author(s):  
Julia Naves Teixeira ◽  
Anderson Renato Vobornik Wolenski ◽  
Vinicius Borges de Moura Aquino ◽  
Tulio Hallak Panzera ◽  
Diogo Aparecido Lopes Silva ◽  
...  

2012 ◽  
Vol 576 ◽  
pp. 314-317
Author(s):  
Sinin Hamdan ◽  
M. Saiful Islam

Five types of selected tropical light hardwoods were chemically modified with benzene diazonium salt to improve their physical and mechanical properties. Benzene diazonium salt underwent a coupling reaction with wood which was confirmed through FT-IR analysis. The compressive modulus of the treated wood increased, whereas modulus of rupture was shown to decrease on treatment. The modified wood samples had higher hardness (Shore D) values compared to that of the control ones.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2017 ◽  
Vol 41 (1) ◽  
Author(s):  
Mírian de Almeida Costa ◽  
Cláudio Henrique Soares Del Menezzi

ABSTRACT Thermo-mechanical treatment is a technique for wood modification in which samples are densified by means of heat and mechanical compression, applied perpendicularly to fibers, which under different combinations of time, temperature, and pressure increases wood density and thus improve some of its properties. This study aimed to treat thermo-mechanically parica plywood and observe the effects on its physical and mechanical properties. Specimens were submitted to two treatments, 120 and 150 ºC, remaining under pressure for seven minutes and, subsequently, under zero pressure for 15 minutes. Results showed a significant increase in specific mass from 0.48 g cm-3 to an average of 0.56 g cm-3, and a compression ratio of about 31.7% on average. Physical properties also varied significantly and results showed that treated samples swelled and absorbed more water than those untreated, leading to a greater thickness non-return rate. This indicates the proposed thermal treatments did not release the internal compressive stress generated during panel pressing, not improving its dimensional stability as a result. On the other hand, mechanical properties were positively affected, leading to an increase of 27.5% and 51.8% in modulus of rupture after treatments at 120 and 150 ºC, respectively. Modulus of elasticity and glue-line shear strength did not vary statistically and Janka hardness was 29.7% higher after treatment at 150 ºC.


CERNE ◽  
2017 ◽  
Vol 23 (2) ◽  
pp. 153-160
Author(s):  
Stefania Lima Oliveira ◽  
Ticyane Pereira Freire ◽  
Tamires Galvão Tavares Pereira ◽  
Lourival Marin Mendes ◽  
Rafael Farinassi Mendes

ABSTRACT The objective of this study is to assess the effect of the laminar inclusion on the physical and mechanical properties of sugarcane bagasse particleboard. We used the commercial panels of sugarcane bagasse produced in China. To evaluate the effect of the laminar inclusion was tested two wood species (Pinus and Eucalyptus) and two pressures (10 and 15 kgf.cm-2) along with a control (without laminar inclusion). The panels with laminar inclusion obtained improvements in the physical properties, with a significant reduction in the WA2h, WA24h and TS2h. There was a significant increase in the properties MOE and MOR parallel and Janka hardness, while the properties MOE and MOR perpendicular decreased significantly. The pinus and eucalyptus veneers inclusion resulted in similar results when added to the panel with a 10 kgf.cm-2 pressure. The use of 15 kgf.cm-2 pressure is not indicated for the pinus veneer inclusion in sugar cane bagasse panels. There was no effect of the pressure level when evaluating the eucalyptus veneer inclusion on the properties of the sugarcane bagasse panels.


Sign in / Sign up

Export Citation Format

Share Document