scholarly journals Batch adsorption studies for ketoprofen removal via Dillenia Indica peel activated carbon

2021 ◽  
Vol 920 (1) ◽  
pp. 012010
Author(s):  
F Fadzail ◽  
M Hasan ◽  
Z Mokhtar ◽  
N Ibrahim ◽  
O S An ◽  
...  

Abstract Removal of ketoprofen using Dillenia Indica peel activated carbon was investigated using batch adsorption at a laboratory scale. Chemical activation method with the aid of phosphoric acid was utilised in preparing the activated carbon. The adsorption experiments were evaluated using various factors which, are initial concentration, adsorbent dosage, and pH of ketoprofen. The optimum condition was determined to be at pH 6 and adsorbent dosage of 0.4 g with a most KTP uptake of 8.354 mg/g. The experimental findings showed that adsorption is favorable at lower pH. Isotherm studies were conducted and the data indicated that Langmuir isotherm was well fitted to the adsorption process and the pseudo-second-order model was more preferable in simulating the kinetic process. In essence, Dillenia Indica peel activated carbon was proven as being a favourable adsorbent for the uptake of ketoprofen in batch mode.

2018 ◽  
Vol 14 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Mohd Sukri Hassan ◽  
Khairul Adli Nikman ◽  
Fisal Ahmad

Chemical activation process was applied to prepare a cocoa nib-based activated carbon using potassium carbonate (K2CO3). The performance of the activated carbon in removing Methylene Blue from aqueous solution was investigated by batch adsorption studies. The adsorptive properties were studied in terms of initial concentration (C0: 100-300 mg/L) and contact time effects. The experimental isotherm data fitted well the Langmuir and Temkin models. The adsorption kinetic followed the pseudo-second-order model and Boyd model explained the mechanism of adsorption. The results indicate that the chemically produced activated cocoa nib carbon has significant potential to be used as an adsorbent material for adsorption of Methylene Blue from aqueous solution.


2019 ◽  
Vol 9 (5) ◽  
pp. 4394-4400 ◽  

Dyes wastewater is listed as one of the largest water polluter in this world and cause problems to the environment as well as human health. The present study aims to investigate the adsorption of methylene blue, a cationic dye commonly used in industries by activated carbon derived from the water hyacinth stem (Eichhornia crassipes (Mart.) Solms). The removal of MB solution was affected by some parameters such as dosage, contact time, pH, and initial dye concentration. The present study showed that the optimum condition for the adsorption process was pH 7, the adsorbent dosage at 0.8 g with the equilibrium was reached at 100 minutes. However, there is no significant adsorption in the effect of pH. It was found that the best correlation of kinetic with the MB adsorption was the pseudo-second-order model, while the isotherm study was well represented with the Freundlich model. The porosity of adsorbent was enhanced after carbonization process. The functional group presence on the surface of adsorbent including alcohols, carboxyl and carbonyl were also contributed to the effectiveness of adsorption process.


Author(s):  
Li Cong ◽  
Lingling Feng ◽  
Xinlai Wei ◽  
Jie Jin ◽  
Ke Wu

The activated carbon was prepared from sycamore bark by activation of zinc chloride. The absorbing effect of activated carbon on Congo red wastewater is studied. The characteristics of sycamore bark activated carbon were characterized by SEM and BET. The effects of adsorbent dosage, time, and shaking speed on the adsorption properties of Congo red by sycamore bark activated carbon were studied. The isotherm, kinetics, and thermodynamics of adsorption were explored. The results revealed that the activated carbon contain a large apparent mesopores. Adsorption efficiency was increased with enhancing the adsorption dosage and time. The removal rate of Conge red reached to 98.2% under room temperature with adsorbent dosage of 3.0 g/L, adsorption time of 120 min, shaking speed of 60r/min. The adsorption of Congo red on sycamore bark activated carbon was followed Langmuir isotherm model and Lagergren pseudo-second order kinetics model. The adsorption was spontaneous, endothermic, and the entropy was increasing in the adsorption process.


2015 ◽  
Vol 73 (4) ◽  
pp. 955-966 ◽  
Author(s):  
Prashant T. Dhorabe ◽  
Dilip H. Lataye ◽  
Ramakant S. Ingole

The present paper deals with a complete batch adsorption study of 4-nitrophenol (4NP) from aqueous solution onto activated carbon prepared from Acacia glauca sawdust (AGAC). The surface area of the adsorbent determined by methylene blue method is found to be 311.20 m2/g. The optimum dose of adsorbent was found to be 2 g/l with 4NP uptake of 25.93 mg/g. The equilibrium time was found to be 30 minutes with the percentage removal of 96.40 at the initial concentration of 50 ppm. The maximum removal of 98.94% was found to be at pH of 6. The equilibrium and kinetic study revealed that the Radke–Prausnitz isotherm and pseudo second order kinetics model fitted the respective data well. In the thermodynamic study, the negative value of Gibbs free energy change (−26.38 kJ/mol at 30°C) and enthalpy change (−6.12 kJ/mol) showed the spontaneous and exothermic nature of the adsorption process.


2012 ◽  
Vol 14 (3) ◽  
pp. 201 ◽  
Author(s):  
L. Largitte ◽  
S. Gervelas ◽  
T. Tant ◽  
P. Couespel Dumesnil ◽  
P. Lodewyckx

<p>An activated carbon from Bois carré (Citharexylum Fruticosum L.) seeds was prepared by chemical activation with phosphoric acid. The activated carbon obtained has a surface area of 594 m<sup>2</sup>/g and a high content of acid groups of 3.44 mmol.g<sup>-1</sup>. This carbon was studied for the removal of lead from water. Sorption studies were performed at 30 °C at different pH and adsorbent doses, in batch mode. Maximum adsorption occurred at pH 7 for an adsorbent dose of 1g/L. Kinetic studies, at the initial concentration of 150 mg/L of lead, pH 5 and an adsorbent dose of 1 g/L, yielded an equilibrium time of 30 h for this activated carbon. The kinetic data were modelled with the pseudo first order, the pseudo second order and the Bangham models. The pseudo second order model fitted the data well. The sorption rate constant (2.10<sup>-3</sup> mol<sup>-1</sup>.Kg.s<sup>-1</sup>) and the maximum amount of lead adsorbed are quite good (0.18 mol.kg<sup>-1</sup>) compared to the data found in literature. Sorption equilibrium studies were conducted in a concentration range of lead from 0 to 150 mg/L, at pH 5, adsorbent dose 1 g/L. In an aqueous lead solution with an initial concentration of 30 mg/L, activated Bois carré seed carbon removed (at equilibrium) 48% of the heavy metal. The equilibrium data were modelled with the Langmuir and Freundlich equations, of which the latter gave the best fit. The Freundlich constants n (3.76 L.mol<sup>-1</sup>) and Kf (1.06 mol.kg<sup>-1</sup>) are in good agreement with literature. The Bois carré seed activated carbon is a very efficient carbon in terms of the metal amount adsorbed per unit of surface area (0. 06 m<sup>2</sup>/g). This good result is due to the presence of many active acid sites on the surface of this activated carbon.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abdulaziz Ali Alghamdi ◽  
Abdel-Basit Al-Odayni ◽  
Naaser A. Y. Abduh ◽  
Safiah A. Alramadhan ◽  
Mashael T. Aljboar ◽  
...  

The aim of this work was to investigate the adsorptive performance of the polypyrrole-based KOH-activated carbon (PACK) in the removal of the basic dye crystal violet (CV) using a batch adsorption system. The equilibrium data, obtained at different initial CV concentrations ( C 0 = 50 – 500   mg / L ) and temperatures (25–45°C), were interpreted using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, with the Langmuir model providing a better fit ( R 2 ≥ 0.9997 ) and a maximum adsorption capacity of 497.51 mg/g at 45°C. Under the examined conditions, the values of the thermodynamic parameters free energy, enthalpy, and entropy indicate a spontaneous, endothermic, and physisorption adsorption process. The kinetic data of the adsorption process were very well described by a pseudo-second-order model ( R 2 ≥ 0.9996 ). However, surface diffusion seems to be the main rate-controlling step. Thus, we concluded that PACK shows commercial potential for the removal of cationic dyes such as CV from industrial effluent.


2012 ◽  
Vol 30 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Fadela Nemchi ◽  
Benaouda Bestani ◽  
Nouredine Benderdouche ◽  
Mostefa Belhakem ◽  
Louis Charles de Minorval

Adsorbents prepared from seawater algae, viz. green Ulva lactuca (PGA) and brown Systoceira stricta (PBA), by chemical activation were successfully tested for the removal of Supranol Yellow 4GL dye from aqueous solutions. Impregnation in 20% phosphoric acid for 2 h at 170 °C and subsequent air activation at 600 °C for 3 h significantly enhanced the adsorption capacities of both algae relative to their inactivated states. Parameters influencing the adsorption capacity such as contact time, adsorbent dosage, pH and temperature were studied. Similar experiments were carried out with commercially available Merck activated carbon (MAC) for comparative purposes. Adsorption efficiencies were measured at a pH 2 and dosages of 8 g/ℓ and 12 g/ℓ for PGA and PBA, respectively. Batch adsorption experiments resulted in maximum adsorption capacities determined from Langmuir models of up to 263, 93 and 84 mg/g for PGA, PBA and MAC, respectively. BET, FT-IR analyses, iodine number and Methylene Blue index determination were also performed to characterize the prepared adsorbents. The adsorption kinetics were found to comply with the pseudo-second-order model with intra-particle diffusion being the rate-determining step. Thermodynamic analysis confirmed that the adsorption reaction was spontaneous and endothermic. These studies indicate that these seawater algae could be used as low-cost alternatives for the removal of dyes.


2013 ◽  
Vol 69 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Hossam Altaher ◽  
Andrea M. Dietrich

The production and performance of activated carbon prepared from date pits was investigated. Date pits are an abundant local waste product in many countries; converting them to a commercial product would increase the sustainability of this fruit crop. The date pit activated carbon was shown to have similar characteristics of pore size and surface functional groups as other commercial carbons. Batch experiments were conducted with o- and p-nitrophenol to evaluate the performance of this carbon. Results were analyzed according to Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms. The adsorption capacity of o-nitrophenol was 142.9 mg/g while that of p-nitrophenol was 108.7 mg/g. The adsorption process was physical in nature. The position of the −NO2 group in the benzene ring has a considerable effect on the adsorption capacity and rate of uptake. The kinetic results showed that a pseudo second-order model appropriately describes the experimental data. The analysis of kinetic data revealed that the mechanism of adsorption is complex with both liquid film diffusion and intraparticle diffusion contributing to adsorption of both adsorbates.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Y. El maguana ◽  
N. Elhadiri ◽  
M. Benchanaa ◽  
R. Chikri

Batch adsorption experiments have been conducted to investigate the removal of methyl orange from aqueous solution by an activated carbon prepared from prickly pear seed cake by phosphoric acid activation. The adsorption process has been described by using kinetic and isotherm models. The kinetic of adsorption was examined by pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. Adsorption isotherm was modeled using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The adsorption process of methyl orange was well explained by the pseudo-second-order model and Freundlich isotherm. Also, pseudo-n-order model has been applied to estimate the order of adsorption kinetic and it was found equal to 2 which confirm the good accuracy of the pseudo-second order. Moreover, Dubinin–Radushkevich isotherm reveals that the adsorption of methyl orange onto activated carbon was a physisorption process in nature. The adsorption capacity of activated carbon was found to be 336.12 mg/g at temperature 20°C and pH∼7. These results demonstrated that the prickly pear seed cake is a suitable precursor for the preparation of appropriate activated carbon for dyes removal from aqueous solution.


2011 ◽  
Vol 233-235 ◽  
pp. 1972-1980 ◽  
Author(s):  
Yu Bin Tang ◽  
Fang Yu ◽  
Fang Yan Chen ◽  
Cheng Chen

Rectorite (REC), humic acid (HA) and polyvinyl alcohol (PVA) were used to prepare microspheres. Batch adsorption experiments of Pb2+ion on to the microspheres were performed. The results obtained indicate that adsorption time, the microspheres dosage and temperature were the main factors influencing the adsorptive capacities. The adsorption data for Pb2+ion were well described by the Freundlich, Langmuir and Temkin models. The kinetic experimental data properly correlated with the pseudo-first-order model, pseudo-second-order model and Elovich equation. The adsorption process is spontaneous, endothermic and out-of-order. The whole adsorption process is mainly controlled by entropies. The adsorption can be classified as chemical adsorption. The mechanisms for the adsorption of Pb2+ion on to the microspheres involved ion-exchange adsorption of Pb2+or the formation of complex compound. Under the experimental conditions employed, the removal of Pb2+ion attained value of 96.05%.


Sign in / Sign up

Export Citation Format

Share Document