scholarly journals Removal of methylene blue from aqueous solution using cocoa (Theobroma cacao) nib-based activated carbon treated with hydrochloric acid

2018 ◽  
Vol 14 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Mohd Sukri Hassan ◽  
Khairul Adli Nikman ◽  
Fisal Ahmad

Chemical activation process was applied to prepare a cocoa nib-based activated carbon using potassium carbonate (K2CO3). The performance of the activated carbon in removing Methylene Blue from aqueous solution was investigated by batch adsorption studies. The adsorptive properties were studied in terms of initial concentration (C0: 100-300 mg/L) and contact time effects. The experimental isotherm data fitted well the Langmuir and Temkin models. The adsorption kinetic followed the pseudo-second-order model and Boyd model explained the mechanism of adsorption. The results indicate that the chemically produced activated cocoa nib carbon has significant potential to be used as an adsorbent material for adsorption of Methylene Blue from aqueous solution.

2021 ◽  
Vol 920 (1) ◽  
pp. 012010
Author(s):  
F Fadzail ◽  
M Hasan ◽  
Z Mokhtar ◽  
N Ibrahim ◽  
O S An ◽  
...  

Abstract Removal of ketoprofen using Dillenia Indica peel activated carbon was investigated using batch adsorption at a laboratory scale. Chemical activation method with the aid of phosphoric acid was utilised in preparing the activated carbon. The adsorption experiments were evaluated using various factors which, are initial concentration, adsorbent dosage, and pH of ketoprofen. The optimum condition was determined to be at pH 6 and adsorbent dosage of 0.4 g with a most KTP uptake of 8.354 mg/g. The experimental findings showed that adsorption is favorable at lower pH. Isotherm studies were conducted and the data indicated that Langmuir isotherm was well fitted to the adsorption process and the pseudo-second-order model was more preferable in simulating the kinetic process. In essence, Dillenia Indica peel activated carbon was proven as being a favourable adsorbent for the uptake of ketoprofen in batch mode.


2014 ◽  
Vol 875-877 ◽  
pp. 196-201 ◽  
Author(s):  
Mohd Faisal Taha ◽  
Ahmad S. Rosman ◽  
Maizatul S. Shaharun

The potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Pb (II) ion from aqueous solution was investigated. Rice husk-based activated carbon was preparedviachemical activation process using NaOH followed by the carbonization process at 500°C. Morphological analysis was conducted using field-emission scanning electron microscope /energy dispersive X-ray (FESEM/EDX) on three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon. These three samples were also analyzed for their C, H, N, O and Si contents using CHN elemental analyzer and FESEM/EDX. The textural properties of rice husk-based activated carbon, i.e. surface area (253 m2/g) and pore volume (0.17 cm2/g), were determined by N2adsorption. The adsorption studies using rice husk-based activated carbon as an adsorbent to remove Pb (II) ion from aqueous solution were carried out at a fixed initial concentration of Pb (II) ion (150 ppm) with varying adsorbent dose as a function of contact time at room temperature. The concentration of Pb (II) ion was determined by atomic absorption spectrophotometer (AAS). The removal of Pb (II) ion from aqueous solution increased from 35 % to 82 % when the amount of rice husk-based activated carbon was increased from 0.05 g to 0.30 g. The equilibrium data obtained from adsorption studies was found to fit both Langmuir and Freundlich adsorption isotherms.


2013 ◽  
Vol 726-731 ◽  
pp. 1922-1925 ◽  
Author(s):  
Lian Ai ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Si Zhao Zhang

The sorptive potential of sunflower straw (≤125 μm) for Sr2+ from aqueous solution was evaluated. Batch adsorption experiments were carried out as a function of solution pH, adsorbent dosage, Sr2+ concentration and contact time. FT-IR spectra and SEM of sunflower straw were employed to explore the functional groups available for the binding of Sr2+ and morphology of the adsorbent. Maximum uptake capacity of sunflower straw was 17.48 mg/g occurred at around pH 3-7. The adsorption equilibrium can be achieved within 5 min and kinetic data were fitted well to pseudo-second-order model. The Langmuir and Freundlich models were applied to describe isotherm sorption data. The Langmuir model gave an acceptable fit than Freundlich model.


2008 ◽  
Vol 5 (4) ◽  
pp. 742-753 ◽  
Author(s):  
M. Sujatha ◽  
A. Geetha ◽  
P. Sivakumar ◽  
P. N. Palanisamy

An Experimental and theoretical study has been conducted on the adsorption of methylene blue dye using activated carbon prepared from babul seed by chemical activation with orthophosphoric acid. BET surface area of the activated carbon was determined as 1060 m2/g. Adsorption kinetics, equilibrium and thermodynamics were investigated as a function of initial dye concentration, temperature and pH. First order Lagergren, pseudo-second order and Elovich kinetic models were used to test the adsorption kinetics. Results were analyzed by the Langmuir, Freundlich and Temkin isotherm models. Based on regression coefficient, the equilibrium data found fitted well to the Langmuir equilibrium model than other models. The characteristics of the prepared activated carbon were found comparable to the commercial activated carbon. It is found that the babul seed activated carbon is very effective for the removal of colouring matter.


2021 ◽  
Vol 42 (1) ◽  
pp. 107-114
Author(s):  
Arun Bhujel ◽  
Krishna Wagle ◽  
Bishow Regmi ◽  
Bibek Sapkota ◽  
Bhoj Raj Poudel ◽  
...  

A promising adsorbent, charred water hyacinth (CWH) for the removal of Ca(II) from the aqueous solution was explored by heat treatment of water hyacinth followed by chemical activation with acidified zinc chloride (ZnCl2). The adsorbent was characterized using scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) spectroscopy. Batch adsorption techniques were conducted for Ca(II) adsorption to assess the adsorption isotherm, effect of pH, contact time, initial Ca(II) concentration, adsorbent doses, and adsorption kinetics. The SEM micrograph illustrates the rough and irregular surface morphology and EDX spectra confirm the successful adsorption of Ca(II) on the adsorbent surface. The equilibrium adsorption data better fitted to the Freundlich isotherm model having a maximum adsorption capacity (qmax) of 319.75 mg/g. The highest percentage of adsorption was found at pH 1.5. The adsorption of Ca(II) by CWH decreased at the higher metal concentration and lower adsorbent doses. The adsorption of Ca(II) ions onto CWH followed the pseudo-second-order kinetics model. . Overall, these results suggested that the as-prepared CWH can be used as an eco-friendly, economical and efficient alternative for the removal of Ca(II)  from the aqueous solution.


2019 ◽  
Vol 25 (8) ◽  
pp. 129-148
Author(s):  
Rafie Rushdy Mohammed

In this study, composite materials consisting of Activated Carbon (AC) and Zeolite were prepared for application in the removal of methylene blue and lead from an aqueous solution. The optimum synthesis method involves the use of metakaolinization and zeolitization, in the presence of activated carbon from kaolin, to form Zeolite. First, Kaolin was thermally activated into amorphous kaolin (metakaolinization); then the resultant metakaolin was attacked by alkaline, transforming it into crystalline zeolite (zeolitization). Using nitrogen adsorption and SEM techniques, the examination and characterization of composite materials confirmed the presence of a homogenous distribution of Zeolite throughout the activated carbon. It has also shown the carbonization process did not destroy the crystalline structure of the zeolite, which was revealed to be intact. Experiments in batch mode were conducted (using three differently-prepared composites, zeolite and activated carbon), to investigate the removal of methylene blue and lead from the aqueous solution of the sorbents. Key experimental parameters (initial concentration, pH, contact time and adsorbent dosage) from the obtained results were measured and analysed. Freundlich and Langmuir models were used to describe the adsorption isotherms, and the observed adsorption kinetic adhered to pseudo-second order.  


Author(s):  
A.O Ajani ◽  
E.O Dada ◽  
O.A Olu-arotiowa ◽  
I.O Okeowo ◽  
A.O Alade ◽  
...  

The presence of methylene blue (MB) in wastewater is a major concern in the environment due to its low biodegradability and harmful effect on man. The adsorption of MB from aqueous solution onto activated carbon (AC) prepared from mango seed shells sourced locally in Ogbomoso Township was investigated in this study. The AC was prepared from mango seed shell by activating with BaCl2 at impregnation ratio I.R (1:2 w/w), microwave frequency (600 Hz), and time (30 min) before being carbonized at 500 °C for 20 min. Batch adsorption experiment was carried out at 25 °C to study the effect of contact time and initial dye concentration on MB adsorption. The equilibrium kinetics and adsorption mechanism were investigated. The pseudo first order, high correlation coefficients, R, (0.9491 and 0.9907) for initial concentrations of 10 and 15 mg/L, respectively, was very suitable to describe the kinetic characteristics of the MB adsorption on to mango seed shell activated carbon, Weber and Morris intra-particle model with R of 0.9907, is very fit to describe the diffusion mechanism of the adsorption process. The result implied that mango seed shell was suitable as an adsorbent material for adsorption of MB.


2014 ◽  
Vol 881-883 ◽  
pp. 1175-1178
Author(s):  
Xu Man Wang ◽  
Cai Ning Zhang

By means of grafting polymerization, cross-linked starch-g-polyacrylamide (starch-g-PAM) was prepared and used to adsorb methylene blue (MB). Adsorption isotherm and kinetic of the sorption process were studied. The experimental results demonstrated that the prepared starch-g-PAM was an effective adsorbent for removal of MB from aqueous solution. The adsorption of MB by starch-g-PAM was Freundlich type, and the adsorption equation was caculated to be . Furthermore, the adsorption kinetics analysis demonstrated that the adsorption process followed the pseudo-second-order model.


Sign in / Sign up

Export Citation Format

Share Document