scholarly journals Linear growth and yield of bivalve mollusks Mya Arenaria linnaeus, 1758 in the conditions of the littoral of the barents and white seas

2021 ◽  
Vol 937 (2) ◽  
pp. 022078
Author(s):  
O V Smolkova

Abstract Mya arenaria are large bivalve mollusks burrowing into the ground. Mollusks are widespread in the northern hemisphere. The growth patterns of M. arenaria were studied in the arctic part of the species’ geographic range. As a result of the research, it was revealed that the mollusks from the Severnaya Inlet of the Kandalaksha Bay of the White Sea have the highest growth rate. The limiting shell length is L∞=174.7 mm, and the rate of growth retardation is k=0.0518 year–1. The mollusks from the Yarnishnaya Inlet of the Barents Sea have the lowest growth rates L∞=84.27 mm, and the rate of growth retardation is k=0.0721 year-1. A positive correlation was found between the nature of the soil and the limiting shell length of mollusks (r = 0.94).

Author(s):  
Larisa A. Pautova ◽  
Vladimir A. Silkin ◽  
Marina D. Kravchishina ◽  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

The structure of the summer planktonic communities of the Northern part of the Barents sea in the first half of August 2017 were studied. In the sea-ice melting area, the average phytoplankton biomass producing upper 50-meter layer of water reached values levels of eutrophic waters (up to 2.1 g/m3). Phytoplankton was presented by diatoms of the genera Thalassiosira and Eucampia. Maximum biomass recorded at depths of 22–52 m, the absolute maximum biomass community (5,0 g/m3) marked on the horizon of 45 m (station 5558), located at the outlet of the deep trench Franz Victoria near the West coast of the archipelago Franz Josef Land. In ice-free waters, phytoplankton abundance was low, and the weighted average biomass (8.0 mg/m3 – 123.1 mg/m3) corresponded to oligotrophic waters and lower mesotrophic waters. In the upper layers of the water population abundance was dominated by small flagellates and picoplankton from, biomass – Arctic dinoflagellates (Gymnodinium spp.) and cold Atlantic complexes (Gyrodinium lachryma, Alexandrium tamarense, Dinophysis norvegica). The proportion of Atlantic species in phytoplankton reached 75%. The representatives of warm-water Atlantic complex (Emiliania huxleyi, Rhizosolenia hebetata f. semispina, Ceratium horridum) were recorded up to 80º N, as indicators of the penetration of warm Atlantic waters into the Arctic basin. The presence of oceanic Atlantic species as warm-water and cold systems in the high Arctic indicates the strengthening of processes of “atlantificacion” in the region.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mats Brockstedt Olsen Huserbråten ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Frode Vikebø

Abstract The Arctic amplification of global warming is causing the Arctic-Atlantic ice edge to retreat at unprecedented rates. Here we show how variability and change in sea ice cover in the Barents Sea, the largest shelf sea of the Arctic, affect the population dynamics of a keystone species of the ice-associated food web, the polar cod (Boreogadus saida). The data-driven biophysical model of polar cod early life stages assembled here predicts a strong mechanistic link between survival and variation in ice cover and temperature, suggesting imminent recruitment collapse should the observed ice-reduction and heating continue. Backtracking of drifting eggs and larvae from observations also demonstrates a northward retreat of one of two clearly defined spawning assemblages, possibly in response to warming. With annual to decadal ice-predictions under development the mechanistic physical-biological links presented here represent a powerful tool for making long-term predictions for the propagation of polar cod stocks.


2013 ◽  
Vol 150 (6) ◽  
pp. 1127-1135 ◽  
Author(s):  
FERNANDO CORFU ◽  
STÉPHANE POLTEAU ◽  
SVERRE PLANKE ◽  
JAN INGE FALEIDE ◽  
HENRIK SVENSEN ◽  
...  

AbstractThe opening of the Arctic oceanic basins in the Mesozoic and Cenozoic proceeded in steps, with episodes of magmatism and sedimentation marking specific stages in this development. In addition to the stratigraphic record provided by sediments and fossils, the intrusive and extrusive rocks yield important information on this evolution. This study has determined the ages of mafic sills and a felsic tuff in Svalbard and Franz Josef Land using the isotope dilution thermal ionization mass spectrometry (ID-TIMS) U–Pb method on zircon, baddeleyite, titanite and rutile. The results indicate crystallization of the Diabasodden sill at 124.5 ± 0.2 Ma and the Linnévatn sill at 124.7 ± 0.3 Ma, the latter also containing slightly younger secondary titanite with an age of 123.9 ± 0.3 Ma. A bentonite in the Helvetiafjellet Formation, also on Svalbard, has an age of 123.3 ± 0.2 Ma. Zircon in mafic sills intersected by drill cores in Franz Josef Land indicate an age of 122.7 Ma for a thick sill on Severnaya Island and a single grain age of ≥122.2 ± 1.1 Ma for a thinner sill on Nagurskaya Island. These data emphasize the importance and relatively short-lived nature of the Cretaceous magmatic event in the region.


Fractals ◽  
1994 ◽  
Vol 02 (02) ◽  
pp. 297-301
Author(s):  
B. DUBUC ◽  
S. W. ZUCKER ◽  
M. P. STRYKER

A central issue in characterizing neuronal growth patterns is whether their arbors form clusters. Formal definitions of clusters have been elusive, although intuitively they appear to be related to the complexity of branching. Standard notions of complexity have been developed for point sets, but neurons are specialized "curve-like" objects. Thus we consider the problem of characterizing the local complexity of a "curve-like" measurable set. We propose an index of complexity suitable for defining clusters in such objects, together with an algorithm that produces a complexity map which gives, at each point on the set, precisely this index of complexity. Our index is closely related to the classical notions of fractal dimension, since it consists in determining the rate of growth of the area of a dilated set at a given scale, but it differs in two significant ways. First, the dilation is done normal to the local structure of the set, instead of being done isotropically. Second, the rate of growth of the area of this new set, which we named "normal complexity", is taken at a fixed (given) scale instead instead of around zero. The results will be key in choosing the appropriate representation when integrating local information in low level computer vision. As an application, they lead to the quantification of axonal and dendritic tree growth in neurons.


2021 ◽  
Author(s):  
Hannah Zanowski ◽  
Alexandra Jahn ◽  
Marika Holland

<p>Recently, the Arctic has undergone substantial changes in sea ice cover and the hydrologic cycle, both of which strongly impact the freshwater storage in, and export from, the Arctic Ocean. Here we analyze Arctic freshwater storage and fluxes in 7 climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6) and assess their agreement over the historical period (1980-2000) and in two future emissions scenarios, SSP1-2.6 and SSP5-8.5. In the historical simulation, few models agree closely with observations over 1980-2000. In both future scenarios the models show an increase in liquid (ocean) freshwater storage in conjunction with a reduction in solid storage and fluxes through the major Arctic gateways (Bering Strait, Fram Strait, Davis Strait, and the Barents Sea Opening) that is typically larger for SSP5-8.5 than SSP1-2.6. The liquid fluxes through the gateways exhibit a more complex pattern, with models exhibiting a change in sign of the freshwater flux through the Barents Sea Opening and little change in the flux through the Bering Strait in addition to increased export from the remaining straits by the end of the 21st century. A decomposition of the liquid fluxes into their salinity and volume contributions shows that the Barents Sea flux changes are driven by salinity changes, while the Bering Strait flux changes are driven by compensating salinity and volume changes. In the straits west of Greenland (Nares, Barrow, and Davis straits), the models disagree on whether there will be a decrease, increase, or steady liquid freshwater export in the early to mid 21st century, although they mostly show increased liquid freshwater export in the late 21st century. The underlying cause of this is a difference in the magnitude and timing of a simulated decrease in the volume flux through these straits. Although the models broadly agree on the sign of late 21st century storage and flux changes, substantial differences exist between the magnitude of these changes and the models’ Arctic mean states, which shows no fundamental improvement in the models compared to CMIP5.</p>


2013 ◽  
Vol 10 (1) ◽  
pp. 357-370 ◽  
Author(s):  
J. M. Holding ◽  
C. M. Duarte ◽  
J. M. Arrieta ◽  
R. Vaquer-Sunyer ◽  
A. Coello-Camba ◽  
...  

Abstract. Climate warming is especially severe in the Arctic, where the average temperature is increasing 0.4 °C per decade, two to three times higher than the global average rate. Furthermore, the Arctic has lost more than half of its summer ice extent since 1980 and predictions suggest that the Arctic will be ice free in the summer as early as 2050, which could increase the rate of warming. Predictions based on the metabolic theory of ecology assume that temperature increase will enhance metabolic rates and thus both the rate of primary production and respiration will increase. However, these predictions do not consider the specific metabolic balance of the communities. We tested, experimentally, the response of Arctic plankton communities to seawater temperature spanning from 1 °C to 10 °C. Two types of communities were tested, open-ocean Arctic communities from water collected in the Barents Sea and Atlantic influenced fjord communities from water collected in the Svalbard fjord system. Metabolic rates did indeed increase as suggested by metabolic theory, however these results suggest an experimental temperature threshold of 5 °C, beyond which the metabolism of plankton communities shifts from autotrophic to heterotrophic. This threshold is also validated by field measurements across a range of temperatures which suggested a temperature 5.4 °C beyond which Arctic plankton communities switch to heterotrophy. Barents Sea communities showed a much clearer threshold response to temperature manipulations than fjord communities.


2017 ◽  
Vol 30 (22) ◽  
pp. 8913-8927 ◽  
Author(s):  
Svenja H. E. Kohnemann ◽  
Günther Heinemann ◽  
David H. Bromwich ◽  
Oliver Gutjahr

The regional climate model COSMO in Climate Limited-Area Mode (COSMO-CLM or CCLM) is used with a high resolution of 15 km for the entire Arctic for all winters 2002/03–2014/15. The simulations show a high spatial and temporal variability of the recent 2-m air temperature increase in the Arctic. The maximum warming occurs north of Novaya Zemlya in the Kara Sea and Barents Sea between March 2003 and 2012 and is responsible for up to a 20°C increase. Land-based observations confirm the increase but do not cover the maximum regions that are located over the ocean and sea ice. Also, the 30-km version of the Arctic System Reanalysis (ASR) is used to verify the CCLM for the overlapping time period 2002/03–2011/12. The differences between CCLM and ASR 2-m air temperatures vary slightly within 1°C for the ocean and sea ice area. Thus, ASR captures the extreme warming as well. The monthly 2-m air temperatures of observations and ERA-Interim data show a large variability for the winters 1979–2016. Nevertheless, the air temperature rise since the beginning of the twenty-first century is up to 8 times higher than in the decades before. The sea ice decrease is identified as the likely reason for the warming. The vertical temperature profiles show that the warming has a maximum near the surface, but a 0.5°C yr−1 increase is found up to 2 km. CCLM, ASR, and also the coarser resolved ERA-Interim data show that February and March are the months with the highest 2-m air temperature increases, averaged over the ocean and sea ice area north of 70°N; for CCLM the warming amounts to an average of almost 5°C for 2002/03–2011/12.


Sign in / Sign up

Export Citation Format

Share Document