scholarly journals Effects of the Carbon Fiber Orientations for the Strengthening of Thin-Walled Steel Cylinders under Compressive Loads and Bending Shear Loads

2021 ◽  
Vol 1048 (1) ◽  
pp. 012019
Author(s):  
P V Nhut ◽  
Y Matsumoto ◽  
T Matsui ◽  
H Nakamura
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yanan Sun ◽  
Pengfei Li ◽  
Guojin Qin

With the development of carbon fiber reinforced composites and the continuous improvement of the properties of bonding agents, scholars recommended using carbon fiber reinforced plastics (CFRP) to enhance cold-formed thin-walled C-shaped steel structures. It can provide a fast and effective way to strengthen and repair damaged steel structures. However, discussion on the bearing capacity calculation of cold-formed thin-walled C-section steel column strengthened by CFRP was limited. Also, the relevant influencing factors (the number of CFRP reinforcement layers), the orientation of CFRP (horizontal, vertical), and the location of CFRP reinforcement (web + flanges + lips, web + flanges, web, and flanges) were overlooked in calculating the bearing capacity of cold-formed thin-walled C-section steel column strengthened by CFRP. Then, the calculation result of the load capacity will be inaccurate. This work, therefore, studied the effects of CFRP reinforcement layers, CFRP direction, and CFRP reinforcement position on the ultimate load of CFRP-strengthened cold-formed thin-walled C-section steel column. A three-dimensional (3D) finite element model of cold-formed thin-walled steel strengthened by CFRP was established to discuss the bearing capacity under axial compression. Furthermore, a method for calculating the bearing capacity of the CFRP-strengthened cold-formed thin-walled C-section steel column was proposed based on the direct strength methods (DSM). The results indicate that not only the slenderness ratio, section size, and length of members but also the number of CFRP reinforcement layers and orientation of CFRP have an impact on the calculation of bearing capacity. The equation modified in this work has excellent accuracy and adaptability. Predicting the bearing capacity of reinforced members is necessary to give full play to the performance of CFRP accurately. Thus, the methods proposed can provide a reference value for practical engineering.


Author(s):  
Eboreime Ohioma ◽  
Muhammad Ali ◽  
Khairul Alam

This study was conducted to investigate the effects of cross-sectional geometry on thin wall axial crushing members for the purpose of improved energy absorption. A total of five geometrically equivalent shapes (same wall thickness area, material, and length) were analyzed namely, triangle, rectangle, square, pentagon, and circle. The deformation modes and energy absorption of the members were studied under compressive loads and compared using ABAQUS/Explicit module, finite element analysis software. The simulations revealed that for the five geometrically equivalent cross sections under equal loading conditions, the pentagon shaped member absorbed the highest amount of energy. As compared to baseline rectangle member, the pentagon member absorbed approximately 25–28% more energy.


2019 ◽  
Vol 54 (2) ◽  
pp. 229-242
Author(s):  
Yan-nan Zhang ◽  
Wei Zhou ◽  
Peng-fei Zhang

In present research, the internal damage evolution and failure characteristics of carbon fiber woven composites under indentation and residual compressive loads were studied by using acoustic emission technology and X-ray micro-computed tomography. Real-time acoustic emission signals originating from internal damage of composites under applied loads were obtained and analyzed by the k-means clustering algorithm. Moreover, the internal damage characteristics were observed by the reconstructed three-dimensional model and the slice images of composite specimens. The results showed that the higher the indentation force reading, the more acoustic emission signals with high amplitude and frequency (over 300 kHz) are generated. Furthermore, the early acoustic emission signals with high-frequency were observed under residual compressive loads. It can be attributed to serious failures of fibers with the increase of static indentation loads. In addition, the internal damages such as delamination, debonding, crack and fiber breakage can be clearly characterized by micro-computed tomography and scanning electron microscopy observation. The complementary technology combing acoustic emission with micro-computed tomography can provide a better understanding of internal damages and evolution behaviors of the composites.


2011 ◽  
Vol 374-377 ◽  
pp. 1738-1741
Author(s):  
Yuan Qi Li ◽  
Jing Kai Yang

This paper gives a simple introduction of the development and structural behaviors of cold-formed thin-walled steel structure under shear loads. An overview of existing research on shear performance of cold-formed thin-walled steel composite walls with openings is given. This paper summarizes and arranges the data of such experiments on composite walls with openings. Finally, with the use of SPSS (Statistical Product and Service Solutions) software, this paper makes a regression analysis, and gets an equation of reduction ratio considering openings.


2007 ◽  
Vol 75 (1) ◽  
Author(s):  
Leonid M. Zubov ◽  
Denis N. Sheidakov

Background. Many papers on the elastic stability of both thin-walled and massive (three-dimensional) bodies regard the bifurcation of equilibrium in the case of compressive loads. Although, the elastic instability may also occur under tensile stresses. Method of Approach. In the present paper on the basis of three-dimensional equations of the nonlinear elasticity the instability of a stretched infinite hollow cylinder under torsion and inflation is investigated. The bifurcational method of stability analysis is used. Results. The critical surfaces and stability region in the space of loading parameters are defined for a Biderman material and special model of incompressible medium, which possess essential material nonlinearity. The influence of a wall thickness on the instability of a hollow cylinder is analyzed. Conclusions. Based on the obtained results, a simple and efficient practical criterion of stability under tension is formulated. This criterion can be represented in the form of the Drucker postulate, given in terms of external loads.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7062
Author(s):  
Jerzy Bochnia ◽  
Malgorzata Blasiak ◽  
Tomasz Kozior

This study focused on the analysis of the mechanical properties of thin-walled specimens fabricated by fused deposition modelling (FDM). Two materials were considered, i.e., polylactide (PLA) and polylactide with carbon fiber (PLA-CF). The article describes how the specimens with different thicknesses and printing orientations were designed, printed, measured to assess their geometric and dimensional accuracy, subjected to tensile testing, and examined using scanning electron microscopy. The data provided here can be used for further research aimed at improving filament deposition and modifying the base material by combining it with different components, for example carbon fiber. The investigations revealed that the properties of thin-walled elements produced by FDM varied significantly depending on the thickness. So far, this problem has not been investigated extensively. Research by analyzing the key parameter, which is the direction of printing that is important for thin-walled models, provides a lot of new information for designers and technologists and opens the way to further extended scientific research in the field of the strength analysis of thin-walled models produced by 3D printing, which is very applicable to structure optimization in the era of the industrial revolution 4.0 and progress in the LEAN manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document