scholarly journals Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints

Author(s):  
P Srinivasa Rao ◽  
Pragash Ramachandran ◽  
S Jebaraj
2020 ◽  
Vol 118 (1) ◽  
pp. 108
Author(s):  
M.A. Vinayagamoorthi ◽  
M. Prince ◽  
S. Balasubramanian

The effects of 40 mm width bottom plates on the microstructural modifications and the mechanical properties of a 6 mm thick FSW AA6061-T6 joint have been investigated. The bottom plates are placed partially at the weld zone to absorb and dissipate heat during the welding process. An axial load of 5 to 7 kN, a rotational speed of 500 rpm, and a welding speed of 50 mm/min are employed as welding parameters. The size of the nugget zone (NZ) and heat-affected zone (HAZ) in the weld joints obtained from AISI 1040 steel bottom plate is more significant than that of weld joints obtained using copper bottom plate due to lower thermal conductivity of steel. Also, the weld joints obtained using copper bottom plate have fine grain microstructure due to the dynamic recrystallization. The friction stir welded joints obtained with copper bottom plate have exhibited higher ductility of 8.9% and higher tensile strength of 172 MPa as compared to the joints obtained using a steel bottom plate.


2019 ◽  
Vol 59 (6) ◽  
pp. 580-586
Author(s):  
Miroslav Sahul ◽  
Martin Sahul ◽  
Matej Pašák ◽  
Milan Marônek

EN AW2099 aluminium lithium alloy, 2.0mm in thickness, was used as an experimental material. EN AW2099 belongs to the 3rd generation of aluminium lithium alloys. The third generation was developed to improve the disadvantages of the previous generation, such as anisotropy in mechanical properties, low fracture toughness, corrosion resistance and resistance to fatigue crack growth, as well. Aluminium magnesium 5087 filler wire with a diameter of 1.2mm was used for the welding. Crack free weld joints were produced after an optimization of welding parameters. The microstructure of weld metal and mechanical properties of weld joints were investigated. Equiaxed zone (EQZ) was observed at the fusion boundary. The character of grains changed in the direction towards the weld centre, from the columnar dendrite zone to equiaxed dendrite zone in the weld centre. The microstructure of the weld metal matrix consisted of -aluminium. Alloying elements enrichment was found at the inter-dendritic areas, namely copper and magnesium. The microhardness decrease in the weld metal due to a dissolution of strengthening precipitates was measured. The microhardness was slightly higher in comparison to a weld produced by a laser welding without a filler material. The tensile strength of the weld joint reached around 67% of the base material’s strength and the fracture occurred in the weld metal.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Amborish Banerjee ◽  
Michail Ntovas ◽  
Laurie Da Silva ◽  
Salaheddin Rahimi ◽  
Bradley Wynne

AbstractThe evolution of microstructure and mechanical properties in AISI 8630 low-alloy steel subjected to inertia friction welding (IFW) have been investigated. The effects of three critical process parameters, viz. rotational speed, friction and forge forces, during welding of tubular specimens were explored. The mechanical properties of these weld joints, including tensile and Charpy V-notch impact were studied for determining the optimum welding parameters. The weld joints exhibited higher yield strength, lower hardening capacity and ultimate tensile strength compared to base metal (BM). The maximum strength and ductility combination was achieved for the welds produced under a nominal weld speed of ~ 2900–3100 rpm, the highest friction force of ~ 680–720 kN, and the lowest axial forging load of ~ 560–600 kN. The measured hardness distribution depicted higher values for the weld zone (WZ) compared to the thermo-mechanically affected zone (TMAZ), heat-affected zone (HAZ) and BM, irrespective of the applied welding parameters. The substantial increase in the hardness of the WZ is due to the formation of microstructures that were dominated by martensite. The observed microstructural features, i.e. the fractions of martensite, bainite and ferrite, show that the temperature in the WZ and TMAZ was above Ac3, whereas that of the HAZ was below Ac1 during the IFW. The fracture surface of the tensile and impact-tested specimens exhibited the presence of dimples nucleating from the voids, thus indicating a ductile failure. EBSD maps of the WZ revealed the formation of subgrains inside the prior austenite grains, indicating the occurrence of continuous dynamic recrystallisation during the weld. Analysis of crystallographic texture indicated that the austenite microstructure (i.e. FCC) in both the WZ and TMAZ undergoes simple shear deformation during IFW.


2016 ◽  
Vol 835 ◽  
pp. 210-215
Author(s):  
Máté Nagy ◽  
Mária Behúlová

The paper deals with the friction stir welding (FSW) of the high strength EN AW 7075-T651 aluminium alloy with the aim to analyze the influence of welding parameters on the mechanical properties of Al-weld joints. FSW represents relatively novel solid-state technology of material joining which can be successfully applied for welding of several metallic alloys including the high-strength aluminium alloys that are hard to weld by conventional fusion welding processes. In cooperation with VÚZ - PI SR Bratislava, nine experimental weld joints of samples with dimensions of 300 × 150 × 10 mm were prepared using the welding machine of the FSW-LM-060 type and different parameters of welding – the welding speed from 60 to 120 mm/min and the tool rotation rate from 600 to 1000 rpm in clockwise direction. The quality of weld joints was evaluated by static tensile tests and micro-hardness measurements. According to obtained results of tensile testing, the average values of ultimate strength of weld joints are by 32.2 % lower comparing with the ultimate strength of the base material. On the other hand, the ductility increased by 7.2 %. The highest micro-hardness of weld joints at the level of 129 HV was measured in thermo-mechanically affected zone on the retreating side.


2020 ◽  
Vol 994 ◽  
pp. 96-103
Author(s):  
Erika Hodúlová ◽  
Ingrid Kovaříková ◽  
Beáta Šimeková ◽  
Jozef Bárta ◽  
Martin Sahul ◽  
...  

Study of weld joints of nonferrous, Inconel 625 alloy sheets using a new generation disk laser as the green welding technology for the effective manufacturing were carried out, and the results are presented in this paper. Weld joints of the Inconel 625 alloy sheets 2,0 mm thick were welded by laser without an additional material at a flat position, using a high purity argon as the shielding gas. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The influence of welding speed and laser power to the joint quality was investigated. The study of quality and mechanical properties of the joints were determined by metallographic evaluation, tensile and hardness tests.


2020 ◽  
Vol 14 (1) ◽  
pp. 6259-6271
Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanish Paramaguru ◽  
Mokhtar Awang ◽  
Hamed Mohebbi ◽  
Sharma V Korada

Underwater Friction Stir Welding (UFSW) is a solid-state joining technique which uses a non-consumable tool to weld metals. The objective of this investigation is to evaluate the mechanical properties of the AA5052 Aluminium alloy joints prepared by UFSW. The effect of different type of welding tools and welding parameters on the weld joint properties are studied. Square, tapered cylindrical and taper threaded cylindrical type of welding tools have been used to produce the joints with the tool rotational speed varying from 500 rpm to 2000 rpm while the welding speed varying from 50 mm/min to 150 mm/min. Tensile strength, micro-hardness distribution, fracture features, micro-and macrostructure of the fabricated weld joints have been evaluated. The effect of welding process parameters that influences the mechanical properties and fracture characterization of the joints are explained in detail. A maximum Ultimate Tensile Strength (UTS) value of 222.07 MPa is attained with a gauge elongation of 14.78%. Microstructural evaluation revealed that most of the fracture are found on the thermal mechanically affected zone (TMAZ)adjacent to the weld nugget zone (WNZ) due to bigger grain sizes. It is found that most of the joints exhibit ductile characteristics in failure. Fractography analysis has been used to find the behavior of weld joints in failure.


2020 ◽  
Vol 994 ◽  
pp. 88-95
Author(s):  
Erika Hodúlová ◽  
Beáta Šimeková ◽  
Ingrid Kovaříková ◽  
Martin Sahul

The scope of this study was to ascertain the weldability of Nickel 201 alloy sheets using an electron beam welding method. Weld joints of the Nickel 201 alloy sheets 2,0 mm thick were welded by electron beam without an additional material at a flat position. The influence of electron beam welding parameters on weld quality and mechanical properties of test joints was studied. The study of quality and mechanical properties of the joints were determined by metallographic evaluation, tensile and hardness tests.


Sign in / Sign up

Export Citation Format

Share Document