scholarly journals Investigation of the Cr volatilisation using the ceramic phase collector technique

2021 ◽  
Vol 1163 (1) ◽  
pp. 012032
Author(s):  
T Thublaor ◽  
P Wiman ◽  
C Nanna ◽  
W Jaijitmun ◽  
S Krittiyanitsakun ◽  
...  
Keyword(s):  
2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Surajit Purkayastha ◽  
D. K. Dwivedi

The effect of CeO2 modification on flame sprayed nickel-tungsten carbide (WC) coatings was investigated. The modified coatings exhibited smaller grain sizes of the ceramic phase due to enhanced dissolution of the WC phase. The rare earth doped coatings, especially Ni-WC +0.9% wt. CeO2, showed superior abrasive wear resistance with respect to the unmodified coating mainly due to enhanced hardness. Coating modified with 0.6% wt. CeO2 demonstrated superior erosion resistance at both impact angles, 30 deg and 90 deg, respectively, primarily due to low porosity levels. Microstructural examination showed different wear mechanisms in conventional and doped coatings.


2017 ◽  
Vol 898 ◽  
pp. 1468-1477 ◽  
Author(s):  
Hong Wei Li ◽  
Guo Ping Li ◽  
Wen Chen ◽  
Li Hui Sun ◽  
Feng Hua Luo ◽  
...  

TiC base high manganese steel-bonded carbide was manufactured with conventional powder metallurgy method to service in wear and impact resistant condition. WC was added in the alloy in the form of (W,Ti)C carbides to improve the impact toughness and expand the applications of alloy, meanwhile, cobalt powder was also used to enhance the wettability of the metallic binder on the ceramic phase. Results showed that the impact toughness of the alloy was increased remarkably with the increase of WC content. The impact toughness reached 10.6 J/cm2 when WC content was 10.5 wt.%, while the hardness of the alloy did not decrease. It was indicated that the appropriate content of WC and cobalt can improve impact toughness and wear resistance of the alloy greatly with little increase in the production cost.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
J. Jakubowicz ◽  
M. Sopata ◽  
G. Adamek ◽  
P. Siwak ◽  
T. Kachlicki

The nanocrystalline tantalum-ceramic composites were made using mechanical alloying followed by pulse plasma sintering (PPS). The tantalum acts as a matrix, to which the ceramic reinforced phase in the concentration of 5, 10, 20, and 40 wt.% was introduced. Oxides (Y2O3 and ZrO2) and carbides (TaC) were used as the ceramic phase. The mechanical alloying results in the formation of nanocrystalline grains. The subsequent hot pressing in the mode of PPS results in the consolidation of powders and formation of bulk nanocomposites. All the bulk composites have the average grain size from 40 nm to 100 nm, whereas, for comparison, the bulk nanocrystalline pure tantalum has the average grain size of approximately 170 nm. The ceramic phase refines the grain size in the Ta nanocomposites. The mechanical properties were studied using the nanoindentation tests. The nanocomposites exhibit uniform load-displacement curves indicating good integrity and homogeneity of the samples. Out of the investigated components, the Ta-10 wt.% TaC one has the highest hardness and a very high Young’s modulus (1398 HV and 336 GPa, resp.). For the Ta-oxide composites, Ta-20 wt.% Y2O3 has the highest mechanical properties (1165 HV hardness and 231 GPa Young’s modulus).


2021 ◽  
Author(s):  
VINOTHINI VENKATACHALAM, ◽  
JON BINNER ◽  
THOMAS REIMER ◽  
BUCKARD ESSER ◽  
STEFANO MUNGIGUERRA ◽  
...  

Carbon fibre (Cf) reinforced Ultra High Temperature Ceramic (UHTC) Matrix Composites (UHTCMCs) have proven to be excellent materials that can survive nearly 3000°C in highly oxidizing environments along with a good specific strength. Consequently, they have excellent potential for use in aerospace applications such as rocket nozzle throats and thermal protection systems (TPS). Due to the presence of the carbon fibres, UHTCMCs offer high strength and modulus combined with excellent thermal shock behaviour whilst the presence of the ultra-high temperature ceramic phase protects the carbon fibres at the application temperatures. High temperature oxidation, thermal ablation behaviour and mechanical properties of the UHTCMC’s relies heavily on the bonding between the carbon fibre and matrices especially the oxides formed to avoid any progressive failure and predict the life of the components. In the present investigation, a radio frequency assisted chemical vapor infiltration (RF-CVI) technique has been used to make the 2.5D Cf reinforced ZrB2, ZrB2/carbon matrices composites with various interphase materials. The advantage of RF heating is that it creates an inverse temperature profile in the sample, which means that the infiltration starts from inside and progresses outwards. This allows the time needed for processing to be reduced very significantly compared to the conventional CVI process. This presentation will report on the latest results from the research that has been undertaken at the University of Birmingham, including the results from a wide range of testing that has been undertaken at both DLR in Germany and the University of Naples in Italy.


2020 ◽  
Vol 308 ◽  
pp. 110-118
Author(s):  
Mirosław Bonek ◽  
Eva Tillová

The article presents the results of research on the impact of laser surface treatment on selected steel properties. The laser treatment consisted of remelting and alloying high speed steel using hard ceramic phase powders. A high-power diode laser was used in the experiment to examine the effect of parameters such as beam power and powder type on the structure and properties of the surface layer. A structural mechanism was observed consisting in obtaining, after laser processing, a super fine crystalline structure and a dendritic structure at the remelting zone. Structural changes have been found to be associated with improved properties such as hardness, microhardness and wear resistance. Steel treated with conventional heat treatment was used as a comparative material.


2010 ◽  
Vol 66 ◽  
pp. 162-167 ◽  
Author(s):  
Zbigniew Pędzich ◽  
Jan Dul

Paper describes the experiment on manufacturing of composite basing on silicone rubber matrix filled with silica binder and kaolin and also glassy fillers. Such material is oriented on applications connected with potential fire hazard. Investigations performed on three mixes, differentiated in proportion of components, indicate potential simply way of composition of ceramizable composite.


1996 ◽  
Vol 465 ◽  
Author(s):  
Ewan Maddrell

ABSTRACTThe development of novel, Radical Purex, reprocessing technologies, leading to fission product waste streams with high levels of inert constituents, may mean that vitrification is no longer the optimum solution for the immobilisation of highly active wastes at the back end of the nuclear fuel cycle. A ceramic phase assemblage is described which uses the inert constituents of the waste stream as a functional component of the waste form, permitting high waste loadings to be achieved and thus enabling waste minimisation considerations to be satisfied. The initial development of this phase assemblage is presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
S. N. S. Jamaludin ◽  
S. Basri ◽  
Ahmad Hussain ◽  
Dheya Shujaa Al-Othmany ◽  
F. Mustapha ◽  
...  

The composition of hydroxyapatite (HA) as the ceramic phase and titanium (Ti) as the metallic phase in HA/Ti functionally graded materials (FGMs) shows an excellent combination of high biocompatibility and high mechanical properties in a structure. Because the gradation of these properties is one of the factors that affects the response of the functionally graded (FG) plates, this paper is presented to show the domination of the grading parameter on the displacement and stress distribution of the plates. A three-dimensional (3D) thermomechanical model of a 20-node brick quadratic element is used in the simulation of the thermoelastic behaviors of HA/Ti FG plates subjected to constant and functional thermal, mechanical, and thermomechanical loadings. The convergence properties of the present results are examined thoroughly in order to assess the accuracy of the theory applied and to compare them with the established research results. Instead of the grading parameter, this study reveals that the loading field distribution can be another factor that reflects the thermoelastic properties of the HA/Ti FG plates. The FG structure is found to be able to withstand the thermal stresses while preserving the high toughness properties and thus shows its ability to operate at high temperature.


Sign in / Sign up

Export Citation Format

Share Document