Optimisation of the Ceramic Phase for Ceramizable Silicone Rubber Based Composites

2010 ◽  
Vol 66 ◽  
pp. 162-167 ◽  
Author(s):  
Zbigniew Pędzich ◽  
Jan Dul

Paper describes the experiment on manufacturing of composite basing on silicone rubber matrix filled with silica binder and kaolin and also glassy fillers. Such material is oriented on applications connected with potential fire hazard. Investigations performed on three mixes, differentiated in proportion of components, indicate potential simply way of composition of ceramizable composite.

2021 ◽  
pp. 107754632110253
Author(s):  
Emiliano Rustighi ◽  
Diego F Ledezma-Ramirez ◽  
Pablo E Tapia-Gonzalez ◽  
Neil Ferguson ◽  
Azrul Zakaria

This article proposes a simple physical-based model to describe and predict the performance of axially compressed magnetorheological elastomer cylinders used as vibration and shock absorbers. The model describes the magnetorheological elastomer macroscopic stiffness changes because of an externally applied magnetic field from a microscopic composite cell of silicone rubber and carbonyl iron particle. Despite neglecting the material hyperelasticity, anisotropy and adjacent magnetic interaction, the model describes effectively the effect of the magnetic field on the macroscopic modulus of elasticity. The changes in the mechanical properties with the induced magnetic field are measured on samples of different particle concentration based on volume percentage, that is, 10 and 30 percent concentration of iron particles in a silicone rubber matrix. The manufacturing process of the samples is detailed, as well as the experimental validation of the effective stiffness change under a magnetic field in terms of transmissibility and mobility testing. However, the prediction seems to be limited by the linear elastic material model. Predictions and measurements are compared, showing that the model is capable of predicting the tunability of the dynamic/shock absorber and that the proposed devices have a possible application in the reduction of mechanical vibrations.


2018 ◽  
Vol 772 ◽  
pp. 61-65
Author(s):  
Muntaz Hana Ahmad Khairi ◽  
Saiful Amri Mazlan ◽  
Ubaidillah ◽  
Siti Aishah Abdul Aziz ◽  
Norhiwani Mohd Hapipi

This study introduces a sucrose acetate isobutyrate (SAIB) as an additive of magnetorheological elastomers (MREs) to be added in silicone rubber matrix and carbonyl iron particles (CIPs) as their filler. The CIPs were fixed at 60 wt% and two types of MREs sample were fabricated which are isotropic and anisotropic. Rheological properties related to shear storage modulus were measured using a rheometer (MCR 302, Anton Paar). The experimental results demonstrated that the magnetorheological (MR) effect of anisotropic MREs-based Silicone/SAIB was 126 % as compared to isotropic MREs-based Silicone/SAIB, 64%. The fabricated MREs samples were frequency and strain dependent. The relative MR effect for both samples showed decreasing trend with the increment of strain amplitude and excitation frequency.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3708
Author(s):  
Penghu Li ◽  
Haiyun Jin ◽  
Shichao Wei ◽  
Huaidong Liu ◽  
Naikui Gao ◽  
...  

Ceramizable composite is a kind of polymer matrix composite that can turn into ceramic material at a high temperature. It can be used for the ceramic insulation of a metal conductor because of its processability. However, poor low-temperature ceramization performance is a problem of ceramizable composites. In this paper, ceramizable composites were prepared by using silicone rubber as a matrix. Ceramic samples were sintered at different temperatures no more than 1000 °C, according to thermogravimetric analysis results of the composites. The linear contraction and flexural strength of the ceramics were measured. The microstructure and crystalline phase of ceramics were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the composites turned into ceramics at 800 °C, and a new crystal and continuous microstructure formed in the samples. The flexural strength of ceramics was 46.76 MPa, which was more than twice that of similar materials reported in other research sintered at 1000 °C. The maximum flexural strength was 54.56 MPa, when the sintering temperature was no more than 1000 °C. Moreover, glass frit and nano silica played important roles in the formation of the ceramic phase in this research. A proper content of nano silica could increase the strength of the ceramic samples.


2016 ◽  
Vol 125 (3) ◽  
pp. 1373-1386 ◽  
Author(s):  
Przemysław Rybiński ◽  
Witold Żukowski ◽  
Dariusz Bradło

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1343 ◽  
Author(s):  
Jesús Puente-Córdova ◽  
M. Reyes-Melo ◽  
Luis Palacios-Pineda ◽  
Imperio Martínez-Perales ◽  
Oscar Martínez-Romero ◽  
...  

This article focuses on studying the rheological behavior of isotropic and anisotropic magnetorheological elastomers (MREs), made of carbonyl iron microparticles dispersed into a silicone–rubber matrix by considering 20 and 30 wt % of microparticles. Sample sets were prepared for each composition, with and without the application of an external magnetic field. Experimental measurements of the material rheology behavior were carried out by a shear oscillatory rheometer at constant temperature, to determine both the shear storage modulus (G′) and shear loss modulus (G′′) for all characterized samples. Then, experimental data collected from the isotropic and the anisotropic material samples were used to plot the Cole-Cole diagrams to quantify the interfacial adhesion between carbonyl iron microparticles and the silicone-rubber matrix. Furthermore, the Fractional Zener Model (FZM) with two spring-pots in series is used for quantitative analysis of collected experimental data.


2015 ◽  
Vol 820 ◽  
pp. 405-410
Author(s):  
Daniella Cibele Bezerra ◽  
Ignat Pérez Almirall ◽  
Edson Guedes da Costa ◽  
Ana Cristina Figueiredo de Melo Costa ◽  
Edcleide Maria Araújo

This study aims to evaluate the hydrophobicity of vulcanized silicone rubber coatings at room temperature (RTV SR) with loads of alumina trihydrate (ATH) and nanosilica (NS) in the polymeric silicone rubber matrix, in order to obtain coatings ATH/NS/RTV SR to cover the surface of glass electrical insulators. The coatings were characterized by scanning electron microscopy (SEM), testing in salt spray chamber, loss test and recovery of hydrophobicity. These coatings showed varying sizes of agglomerates and heterogeneous distribution of particles within the matrix RTV SR. In the test in salt spray chamber smaller leakage current values was observed for the insulator coating with the ATH/NS loads. In the loss and recovery of the hydrophobicity test the best result was observed for insulating load RTV SR / 20: 1 (ATH: NS).


1997 ◽  
Vol 13 (Supplement) ◽  
pp. 289-294 ◽  
Author(s):  
Hyun Jung Lee ◽  
Hyun Joon Oh ◽  
Gang Cui ◽  
Geun Sig Cha ◽  
Hakhyun Nam

2015 ◽  
Vol 830-831 ◽  
pp. 537-540 ◽  
Author(s):  
L.K. Namitha ◽  
M.T. Sebastian

Silicone rubber composites filled with fused silica were prepared through sigma mixing followed by hot pressing. Filling fraction of fused silica in the silicone rubber matrix was varied from 0-0.51 volume fraction (Vf) and its effects on dielectric properties at different frequencies, thermal properties and moisture absorption were investigated. The results indicate that with the increase of filler volume fraction the relative permittivity increases and dielectric loss decreases. The coefficient of thermal expansion decreased and the moisture absorption increased marginallyas the filler loading increased.


2011 ◽  
Vol 18 (01n02) ◽  
pp. 33-38 ◽  
Author(s):  
ZHIJIE YUAN ◽  
WEIHUA ZHOU ◽  
TING HU ◽  
YIWANG CHEN ◽  
FAN LI ◽  
...  

The silicone rubber (SR) nanocomposites have been successfully prepared via the in situ hydrosilylation reaction in the presence of pristine ZnO and vinyl silane modified ZnO ( SiVi@ ZnO ) nanoparticles. The structure of the pristine ZnO and SiVi @ ZnO nanoparticles were analyzed by the Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The morphology, thermal stabilities, mechanical properties and thermal conductivity of the nanocomposites were also investigated. The results showed that the SiVi @ ZnO nanoparticles exhibit a better dispersion in the silicone rubber than the pristine ZnO nanoparticles. The corresponding silicone rubber/ SiVi @ ZnO (SR/ SiVi @ ZnO ) nanocomposites showed higher mechanical properties and thermal conductivity due to the better dispersion in silicone rubber matrix.


Sign in / Sign up

Export Citation Format

Share Document