scholarly journals Aloe vera as a natural flocculant for palm oil mill effluent (POME) treatment - characterisation and optimisation studies

2021 ◽  
Vol 1195 (1) ◽  
pp. 012035
Author(s):  
R L Chu ◽  
S Vasanthi ◽  
S Anurita

Abstract In the present study, fenugreek and aloe vera were investigated for the removal of turbidity (TUR), total suspended solids (TSS) and chemical oxygen demand (COD) from POME by using a central composite design (CCD) in the Design Expert software. The effects of three factors such as pH, coagulant dosage and flocculant dosage were analysed using jar test experiment and optimised using response surface methodology (RSM). The optimum results obtained from process optimisation analysis were pH 4, 24.13 g of coagulant dosage and 20 ml of flocculant dosage that are sufficient to remove 82.78 % of TUR, 83.40 % of TSS and 32.95 % of COD. The maximum error between the optimised values and the experimental values (82.78 % for TUR, 83.08 % for TSS and 33.76 % for COD) were below 4 %, indicating that satisfactory agreement was achieved. This showed that modelling and optimisation of the coagulation-flocculation process can be achieved by RSM approach. From analytical studies, it was found that the interactions between coagulant-flocculant and colloidal particles involve the mechanisms of charge neutralisation, adsorption and bridging, due to the active components such as amine (N-H) and hydroxyl (O-H) groups contained in the fenugreek and aloe vera.

Author(s):  
Ahmad Zuhairi Abdullah ◽  
Mohamad Hakimi Ibrahim ◽  
Mohd. Omar Ab. Kadir

Kertas kerja ini membincangkan tentang kecekapan penuras cucur dalam merawat supernatan kumbahan kilang kelapa sawit (POME). Supernatan POME diperoleh menerusi dua jenis perawatan. Dalam perawatan 1, pengendapan graviti digunakan untuk menyingkir pepejal boleh mendak. Perawatan 2 digunakan untuk menyingkir pepejal boleh mendak dan gumpalan partikal dengan menggunakan 350 ppm alum. Influen dialurkan secara titisan pada biojisim yang terlekat pada penyokong pepejal rawak PVC setinggi 1 m. Penuras cucur berupaya menyingkir lebih daripada 90.0% dari keperluan oksigen biologi (BOD) dan keperluan oksigen kimia (COD) di bawah 1 m3/m2–hari. Pada 2.53 m3/m2–hari, influen dengan Perawatan 1 menghasilkan kecekapan penyingkiran COD sebanyak 40.3%, berbanding 83.1% bila Perawatan 2 digunakan. Perkara ini berlaku berikutan penyingkiran bahan organik tak boleh resap semasa Perawatan 2. Kecekapan penyingkiran menurun dengan meningkatnya bebanan hidraulik kerana wujudnya kelemahan dalam hidrolisis bahan tak boleh resap kepada substratum larut. Dengan edaran semula (α=1), penyingkiran BOD dan COD yang lebih tinggi dicapai di bawah 7 m3/m2–hari. Pencapaian ini disebabkan oleh bebanan organik yang lebih rendah serta pergedaran semula enzim dan biojisim yang aktif kepada sistem. Perawatan 2 menghasilkan enap cemar yang lebih tinggi kerana penukaran substratum boleh larut kepada biojisim tak boleh larut. Hidrolisis bahan organik tak boleh resap didapati berlaku secara aktif pada bahagian atas penuras cucur sementara bahagian bawahnya cenderung mengoksidakan substratum organik. Kata kunci: POME, turas cucur, bahan organik bolehresap, penggumpalan, alir semula This paper discusses the efficiency of a trickling filter to treat Palm Oil Mill Effluent (POME) supernatants. POME supernatants were obtained via two treatments. In Treatment 1, gravity sedimentation was used to remove settleable solids. In Treatment 2, both settleable solids and colloidal particles were removed using 350 ppm of alum. The influents were allowed to trickle over biomass attached to 1 m high random PVC solid support. Below 1 m3/m2–day, the filter demonstrated Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) removal efficiencies of more than 90.0%. At 2.53 m3/m2–day, the influent with Treatment 1 gave a COD removal efficiency of 40.3%, but increased to 83.1% when the influent with Treatment 2 was used. This was ascribed to the removal of non–diffusible organics during Treatment 2. The removal efficiencies decreased with an increase in hydraulic loading due to limitations in the hydrolysis of non–diffusibles into soluble substrates. With recirculation (α=1), higher BOD and COD removals were achieved below 7.0 m3/m2–day, attributed to lower organic loading and the recycling of active enzyme and biomass to the system. The influent with Treatment 2 demonstrated higher sludge production due to higher conversion of soluble substrates into insoluble biomass. Hydrolysis of non–diffusible organics mainly took place at upper reaches of the filter column while lower reaches were involved in oxidizing the organic subtrates. Key words: POME, trickling filter, diffusible organic, coagulation, recirculation


2014 ◽  
Vol 67 (4) ◽  
Author(s):  
Nor Azimah Ahmad ◽  
Mohd Ariffin Abu Hassan ◽  
Zainura Zainon Noor ◽  
Abdullahi Mohammed Evuti ◽  
Jibrin Mohammed Danlami

Optimum pH and coagulant dosage for chemical precipitation in wastewater treatment plants is conventionally obtained through repeated jar test. In this research, optimization of the performance of polyacrylamide in the treatment of industrial wastewater was carried out using response surface methodology. The individual linear and quadratic effect of coagulant dosage and pH on the degree of removals of nickel, total suspended solids, Chemical Oxygen Demand and turbidity were investigated. The optimum pH and polyacrylamide dosage were found to be 10.5 and 1.6 ml/L respectively and the optimum percentage nickel removal was 96.9%. The model used in predicting the precipitation process gave a good fit with the experimental variables and hence the suitability of response surface methodology for the optimization of polyacrylamide performance.


2018 ◽  
Vol 250 ◽  
pp. 06007 ◽  
Author(s):  
Siti Nor Aishah Mohd-Salleh ◽  
Nur Shaylinda Mohd-Zin ◽  
Norzila Othman ◽  
Nur Syahirah Mohd-Amdan ◽  
Fitryaliah Mohd-Shahli

Treatment on the generated landfill leachate is crucial as it can cause serious toxicological effects and environmental hazards, particularly when the unfavorable contaminants are left accumulated for a long period of time. The purpose of this study was to determine the optimum coagulant dosage of polyaluminium chloride (PAC) in selected dosage ranges (2250-4500 mg/L) and to analyse the ideal pH of leachate sample (pH 3-10). PAC was tested on stabilized leachate taken from Simpang Renggam Landfill Site (SRLS), by investigating the percentage removals of five significant parameters, which were suspended solids, chemical oxygen demand (COD), ammonia, and heavy metals (iron (Fe) and chromium (Cr)). The removal efficiency was determined by a series of experiments using jar test. From the obtained results, it was found that 3750 mg/L and pH 7 were the optimum conditions for PAC dosage and sample pH, respectively. The conventional optimization test showed satisfactory results for suspended solids, COD, Fe, and Cr at 95%, 53%, 97%, and 79% respectively, but had low removal on ammonia at 18%. It can be concluded that the coagulation-flocculation process has the potential to be applied as a primary treatment for stabilized landfill leachate in Malaysia.


2018 ◽  
Vol 152 ◽  
pp. 01009 ◽  
Author(s):  
Sheena Sibartie ◽  
Nurhazwani Ismail

Pharmaceutical wastewater is one of the most difficult wastewater to treat due to the presence of pharmaceutical compounds resulting in high concentration of organic matter, high turbidity and Chemical Oxygen Demand (COD). Chemical-based coagulation is a common method used to treat wastewater. However, the issue that has been raised with the use of chemical coagulants is their presence in water after treatment that can cause risks to the human health such as Alzheimer and cancer. Natural coagulants can be used as a safe alternative to these chemicals instead. Therefore, the objective of this experiment was to study the effect of H. Sabdariffa and J. Curcas as natural coagulants, separately and as a combination, on the treatment of pharmaceutical wastewater. Jar test experiment were carried out where beakers of 0.5L wastewater were mixed with the coagulants. The pH of the wastewater was varied from 2 to 12 while the coagulant dosage was varied from 40 to 200 mg/L. It was found that H. Sabdariffa works best at pH 4 and at a coagulant dosage of 190 mg/L with a highest turbidity removal of 35.8% and a decrease of COD by 29%. J. Curcas was found to perform best at pH 3 and with a coagulant dosage of 200 mg/L with a highest turbidity removal of 51% and a decrease of COD by 32%. When J. Curcas and H. Sabdariffa were used in combination, the optimum composition was found to be 80% J. Curcas and 20% H. Sabdariffa by weight with a maximum turbidity removal of 46.8% and a decrease in COD by 46%. In comparison between the two natural coagulants, J. Curcas is found to be a better and more suited coagulative agent for the treatment of pharmaceutical wastewater. The same experiment was carried with alum at pH 6 and coagulant dosage of 750 mg/L and a turbidity removal of 48% and a decrease in COD by 38% were recorded. In comparison with alum, J. Curcas was a better coagulant in treating the pharmaceutical wastewater. This shows that natural coagulants can be used to replace chemical coagulants in the treatment of pharmaceutical wastewater.


2019 ◽  
Vol 10 (1) ◽  
pp. 48-56
Author(s):  
Caroline C.A. Magalhães ◽  
Julia A. Romão ◽  
Geiza S. Araújo ◽  
Diego T. Santos ◽  
Giovani B.M. De Carvalho

Background: The use of nutritional supplementation of the brewer&#039;s wort can be an interesting option to increase cell viability and yeast fermentability. </P><P> Objective: This study aims to evaluate the effects of the variables wort concentration and nutritional supplementation with palm oil in the production of beer in high-density wort. </P><P> Methods: The process effects were evaluated through the central composite rotational design of type 22 associated with the Response Surface Methodology (RSM). The fermentations were carried out using the commercial Saccharomyces cerevisiae yeast, lager type, at 15&#176;C. </P><P> Results: The mathematical models and RSM obtained were an efficienct strategy to determine the optimum fermentation point for the ethanol volumetric productivity (wort concentration of 20.90 &#176;P and palm oil content of 0.19 % v/v) and for the apparent degree of fermentation (wort concentration of 16.90 &#176;P and palm oil content of 0.22% v/v). There was a good correlation between the experimental values observed and predicted by the model, indicating that the fit of the model was satisfactory and it can be inferred that the increase of the wort concentration and the nutritional supplementation with the palm oil reached an ethanol volumetric productivity of 0.55 g/L.h and an apparent degree of fermentation of 50.20 %. </P><P> Conclusion: Therefore, it can be concluded that our study demonstrates that nutritional supplementation with palm oil is an alternative and promising option for the breweries to increase productivity. There are recent patents also suggesting the advantages of using alternative nutritional supplements in beverage production.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Negisa Darajeh ◽  
Azni Idris ◽  
Paul Truong ◽  
Astimar Abdul Aziz ◽  
Rosenani Abu Bakar ◽  
...  

Palm oil mill effluent (POME), a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST). This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two different concentrations of POME (low and high) were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant) only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.


2021 ◽  
Vol 411 ◽  
pp. 67-78
Author(s):  
Ivy Ai Wei Tan ◽  
J.R. Selvanathan ◽  
M.O. Abdullah ◽  
N. Abdul Wahab ◽  
D. Kanakaraju

Palm oil mill effluent (POME) discharged without treatment into watercourses can pollute the water source. Microbial fuel cell (MFC) has gained high attention as a green technology of converting organic wastewater into bio-energy. As an approach to overcome the limitations of the existing POME treatment methods, air-cathode MFC-Adsorption system is introduced as an innovative technology to treat POME and generate bio-electricity simultaneously. However, the use of conventional MFC with proton exchange membrane in large scale applications is restricted by the high cost and low power generation. Addition of mediator in MFC is essential in order to increase the electron transfer efficiency, hence enhancing the system performance. This study therefore aims to investigate the effect of different type of mediators i.e. congo red (CR), crystal violet (CV) and methylene blue (MB) on the performance of an affordable air-cathode MFC-Adsorption system made from earthen pot with POME as the substrate. The addition of different mediators altered the pH of the MFC-Adsorption system, in which more alkaline system showed better performance. The voltage generated in the system with CR, CV and MB mediator was 120.58 mV, 168.63 mV and 189.25 mV whereas the current generated was 2.41 mA, 3.37 mA and 3.79 mA, respectively. The power density of 290.79 mW/m3, 568.72 mW/m3 and 716.31 mW/m3 was produced in the MFC-Adsorption system with CR, CV and MB mediator, respectively. The highest POME treatment efficiency was achieved in MFC-Adsorption system with MB mediator, which resulted in biochemical oxygen demand, chemical oxygen demand, total suspended solids, turbidity and ammoniacal nitrogen removal of 75.3%, 84.8%, 91.5%, 86.1% and 23.31%, respectively. Overall, the air-cathode MFC-Adsorption system with addition of MB mediator was feasible for POME treatment and simultaneous bio-energy generation.


2018 ◽  
Vol 34 ◽  
pp. 02054 ◽  
Author(s):  
N. Idris ◽  
N.A. Lutpi ◽  
Y. S. Wong ◽  
T.N. Tengku Izhar

This research aims to study the acclimatization phase for biohydrogen production from palm oil mill effluent (POME) by adapting the microorganism to the new environment in continuous-flow system of thermophilic bioreactor. The thermophilic fermentation was continuously loaded with 0.4 L/day of raw POME for 35 days to acclimatize the microorganism until a steady state of biohydrogen production was obtained. The significance effect of acclimatization phase on parameter such as pH, microbial growth, chemical oxygen demand (COD), and alkalinity were also studied besides the production of biogas. This study had found that the thermophilic bioreactor reach its steady state with 1960 mL/d of biogas produced, which consist of 894 ppm of hydrogen composition.


Sign in / Sign up

Export Citation Format

Share Document