scholarly journals Potential of Hibiscus Sabdariffa and Jatropha Curcas as Natural Coagulants in the Treatment of Pharmaceutical Wastewater

2018 ◽  
Vol 152 ◽  
pp. 01009 ◽  
Author(s):  
Sheena Sibartie ◽  
Nurhazwani Ismail

Pharmaceutical wastewater is one of the most difficult wastewater to treat due to the presence of pharmaceutical compounds resulting in high concentration of organic matter, high turbidity and Chemical Oxygen Demand (COD). Chemical-based coagulation is a common method used to treat wastewater. However, the issue that has been raised with the use of chemical coagulants is their presence in water after treatment that can cause risks to the human health such as Alzheimer and cancer. Natural coagulants can be used as a safe alternative to these chemicals instead. Therefore, the objective of this experiment was to study the effect of H. Sabdariffa and J. Curcas as natural coagulants, separately and as a combination, on the treatment of pharmaceutical wastewater. Jar test experiment were carried out where beakers of 0.5L wastewater were mixed with the coagulants. The pH of the wastewater was varied from 2 to 12 while the coagulant dosage was varied from 40 to 200 mg/L. It was found that H. Sabdariffa works best at pH 4 and at a coagulant dosage of 190 mg/L with a highest turbidity removal of 35.8% and a decrease of COD by 29%. J. Curcas was found to perform best at pH 3 and with a coagulant dosage of 200 mg/L with a highest turbidity removal of 51% and a decrease of COD by 32%. When J. Curcas and H. Sabdariffa were used in combination, the optimum composition was found to be 80% J. Curcas and 20% H. Sabdariffa by weight with a maximum turbidity removal of 46.8% and a decrease in COD by 46%. In comparison between the two natural coagulants, J. Curcas is found to be a better and more suited coagulative agent for the treatment of pharmaceutical wastewater. The same experiment was carried with alum at pH 6 and coagulant dosage of 750 mg/L and a turbidity removal of 48% and a decrease in COD by 38% were recorded. In comparison with alum, J. Curcas was a better coagulant in treating the pharmaceutical wastewater. This shows that natural coagulants can be used to replace chemical coagulants in the treatment of pharmaceutical wastewater.

2018 ◽  
Vol 2017 (3) ◽  
pp. 661-666
Author(s):  
Xu Zeng ◽  
Jun Liu ◽  
Jianfu Zhao

Abstract Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe3+ as catalyst was carried out in a batch reactor. Results showed that the degradation of pharmaceutical wastewater was enhanced significantly by Fe3+. The effects of reaction parameters, such as the catalyst dose, reaction temperature, time, and initial oxygen pressure, were discussed. The chemical oxygen demand (COD) removal increased with the increases of catalyst dose, temperature, time and oxygen supply. With the initial COD 34,000–35,000 mg/L, approximately 70% COD removal can be achieved under the conditions of catalyst 1.0 g and oxygen pressure 1.0 MPa at 250 °C after 60 min. The results of kinetic studies showed that two reaction steps existed in this oxidation process, which followed an apparent first-order rate law. This process provides an effective approach for the pretreatment of high concentration pharmaceutical wastewater.


2014 ◽  
Vol 67 (4) ◽  
Author(s):  
Nor Azimah Ahmad ◽  
Mohd Ariffin Abu Hassan ◽  
Zainura Zainon Noor ◽  
Abdullahi Mohammed Evuti ◽  
Jibrin Mohammed Danlami

Optimum pH and coagulant dosage for chemical precipitation in wastewater treatment plants is conventionally obtained through repeated jar test. In this research, optimization of the performance of polyacrylamide in the treatment of industrial wastewater was carried out using response surface methodology. The individual linear and quadratic effect of coagulant dosage and pH on the degree of removals of nickel, total suspended solids, Chemical Oxygen Demand and turbidity were investigated. The optimum pH and polyacrylamide dosage were found to be 10.5 and 1.6 ml/L respectively and the optimum percentage nickel removal was 96.9%. The model used in predicting the precipitation process gave a good fit with the experimental variables and hence the suitability of response surface methodology for the optimization of polyacrylamide performance.


2021 ◽  
Vol 4 (2) ◽  
pp. 7-14
Author(s):  
Edson Alves De Jesus ◽  
Janaina Moreira Meneses ◽  
Marcos Alexandre Cavalcante De Araújo ◽  
Martin Lindsey Christoffersen

The textil industry uses a variety of dyes in the stage of coloring. The liquid effluent resulting at the end of the process has high turbidity and a large chemical oxygen demand. If these byproducts are dumped into natural water bodies, even in small quantities, they may produce damage to the aquatic environment and to human health. Electrocoagulation is becoming an efficient technique for the removal of pollutants from industrial effluents, it is easy to operate, and produces little sludge at the end of the treatment. In the present study, the use of an electrocoagulation reactor with aluminum electrodes proved efficient for turbidity removal from synthetic industrial effluents. The use of a solar plate of photovoltaic electricity for the functioning of the reactor was evaluated. Ideal time of treatment was 20 minutes. The use of a conventional energy source removed 63% of the turbidity. Using the voltaic solar energy source, a removal of 72% of turbidity was attained. We conclude that it is possible to use the alternative solar energy source in order to minimize costs resulting from electrical energy consumption, and, at the same time, to obtain the best results in the removal of pollutants.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012035
Author(s):  
R L Chu ◽  
S Vasanthi ◽  
S Anurita

Abstract In the present study, fenugreek and aloe vera were investigated for the removal of turbidity (TUR), total suspended solids (TSS) and chemical oxygen demand (COD) from POME by using a central composite design (CCD) in the Design Expert software. The effects of three factors such as pH, coagulant dosage and flocculant dosage were analysed using jar test experiment and optimised using response surface methodology (RSM). The optimum results obtained from process optimisation analysis were pH 4, 24.13 g of coagulant dosage and 20 ml of flocculant dosage that are sufficient to remove 82.78 % of TUR, 83.40 % of TSS and 32.95 % of COD. The maximum error between the optimised values and the experimental values (82.78 % for TUR, 83.08 % for TSS and 33.76 % for COD) were below 4 %, indicating that satisfactory agreement was achieved. This showed that modelling and optimisation of the coagulation-flocculation process can be achieved by RSM approach. From analytical studies, it was found that the interactions between coagulant-flocculant and colloidal particles involve the mechanisms of charge neutralisation, adsorption and bridging, due to the active components such as amine (N-H) and hydroxyl (O-H) groups contained in the fenugreek and aloe vera.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Juferi Idris ◽  
Ayub Md Som ◽  
Mohibah Musa ◽  
Ku Halim Ku Hamid ◽  
Rafidah Husen ◽  
...  

The effectiveness of dragon fruit foliage as a natural coagulant for treatment of concentrated latex effluent was investigated and compared with ferric sulfate, a chemical coagulant. Dragon fruit is a round and often red-colored fruit with scales-like texture and is native to south American countries which is also cultivated and heavily marketed in southeast Asian countries. Its foliage represents a part of its overall plant system. Latex effluent is one of the main byproduct from rubber processing factories in Malaysia. Three main parameters investigated were chemical oxygen demand (COD), suspended solids (SS), and turbidity of effluent. Coagulation experiments using jar test were performed with a flocculation system where the effects of latex effluent pH as well as coagulation dosage on coagulation effectiveness were examined. The highest recorded COD, SS, and turbidity removal percentages for foliage were observed for effluent pH 10 at 94.7, 88.9, and 99.7%, respectively. It is concluded that the foliage showed tremendous potential as a natural coagulant for water treatment purposes. The foliage could be used in the pretreatment stage of Malaysian latex effluent prior to secondary treatment.


2013 ◽  
Vol 8 (3-4) ◽  
pp. 495-502 ◽  
Author(s):  
C. Nirmala Rani ◽  
Rajashekar Talikoti

Coagulation being a cost-effective method is best suited for water treatment in rural areas. Natural coagulants suited for the simultaneous removal of turbidity and hardness were investigated. In this study, the seeds of Strychnos Potatorum, the pads of Cactus Opuntia and mucilage extracted from the fruits of Coccinia Indica in synthetic turbid water were used to promote coagulation. The mechanism of turbidity removal by the use of natural coagulants was based on adsorption and charge neutralization. In addition, the adsorption mechanism of hardness removal in hard water conforms to both Langmuir and Freundlich adsorption models. Therefore, for hard water the natural coagulants tend to adsorb hardness and form a net like structure followed by turbidity removal by sweep flocculation. The potential of these natural coagulants were obtained by means of jar test study with initial turbidities of 192 NTU (High) and 28 NTU (Low). It was found that the natural coagulants can be more efficiently used for high turbid waters. Hardness removal efficiency was found to increase with the increase in coagulant dosage.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Vara Saritha ◽  
Manoj Kumar Karnena ◽  
Bhavya Kavitha Dwarapureddi

AbstractOwing to the advantages of the natural coagulants under study, the present objective is to study the efficiency of blended coagulants: alum and chitin; alum and sago; and alum + chitin + sago. In this attempt, we have reduced the quantity of alum dose and added increasing quantities of the natural coagulants. The surface water samples collected from nearby sources were analyzed for the following parameters pre- and post-treatment with the coagulants. Coagulation and flocculation experiments were carried out using conventional jar test apparatus. Turbidity removal was observed to be nearly 99.29% at all pH ranges and doses. Removal of conductivity, solids and hardness was 58.83%, 32.03% and 33.33%, respectively. From the results obtained, it can be observed that the efficiency of blended coagulants in removal of various physicochemical parameters from the waters was better when compared to individual coagulants. The floc size in blend coagulants was larger than that of single coagulants. The data obtained in this study indicated the coagulation efficiency could be enhanced by using the blend coagulant.


2017 ◽  
Vol 18 (2) ◽  
pp. 63-70 ◽  
Author(s):  
Fatin Nabilah Murad

The existing process of coagulation and flocculation are using chemicals that known as cationic coagulant such as alum, ferric sulfate, calcium oxide, and organic polymers.  Thus, this study concentrates on optimizing of flocculation process by microbial coagulant in river water. Turbidity and suspended solids are the main constraints of river water quality in Malaysia. Hence, a study is proposed to produce microbial coagulants isolated locally for river water treatment. The chosen microbe used as the bioflocculant producer is Aspergillus niger. The parameters to optimization in the flocculation process were pH, bioflocculant dosage and effluent concentration. The research was done in the jar test process and the process parameters for maximum turbidity removal was validated. The highest flocculating activity was obtained on day seven of cultivation in the supernatant. The optimum pH and bioflocculant dosage for an optimize sedimentation process were between 4-5 and 2-3 mL for 0.3 g/L of effluent concentration respectively. The model was validated by using a river water sample from Sg. Pusu and the result showed that the model was acceptable to evaluate the bioflocculation process.


2019 ◽  
Vol 4 (4) ◽  
pp. 115-123
Author(s):  
Mona Mohamed Amin Abdel Fatah ◽  
Ghada A. Al Bazedi

The Chemically enhanced process is considered to be a physicochemical technology for domestic wastewater treatment. The objective of this paper is to improve the efficiency of primary treatment processes and reducing the Hazardous Material and cost of the secondary treatment stage either by eliminating a biological treatment, where conditions and standards allow or by reducing the secondary treatment requirements. Analysis of physicochemical parameters as well as the treatment efficiency of aluminum sulfate (alum), ferric chloride (FeCl3), lime (CaO), and seawater was used. The effect of pH and the coagulant dosages were studied as well as mixing and settling time. Conditions were optimized according to the removal efficiencies measured in terms of reduction in the concentration of total suspended solids (TSS), biological oxygen demand (BOD5), and chemical oxygen demand (COD). The optimum COD removal % was achieved at a settling time of 20 minutes, while at pH~6, alum gave a high turbidity % removal of approximately 90% at the dose of 70 mg/l. FeCl3 gave a high turbidity % removal of approximately 95% at the dose of 40 mg/l. Turbidity removal and TSS removal gave a similar pattern at a settling time of 10-20 minutes, where best results were achieved. The results also showed that at pH~4, FeCl3 gave high COD% removal of approximately 90% at the dose of 40 mg/l. By studying the effect of stirrers’ speed (rpm), the results showed that an increase in the mixing intensity, above 80 rpm decreases the removals of COD, Turbidity and TSS when using alum as a coagulant.


2021 ◽  
Vol 107 ◽  
pp. 37-48
Author(s):  
Sabo Bala ◽  
Donatus B. Adie

The research is aimed at exploring the potential of using Corchorus olitorius (Jute) seed extracts as natural coagulant for turbidity removal from water. Laboratory scale studies using jar test experiments were performed on medium turbid water to study the influence of various process parameters such as Coagulant dosage, p H, Turbidity, Colour, Hardness, Alkalinity and Bacterial count and the optimum condition for maximum Turbidity removal was identified. Results obtained showed that at 75mg/L optimal removal of turbidity was achieved. Jute seed extract was also able to maintain the p H of treated water at 7.02 with the 75mg/L dosage. However, the reduction in turbidity was below the World Health Organization (WHO) recommended value of 5NTU. The best colour removal was also not up to the WHO’s recommended value of 40TCU. The chemical analysis result showed that Jute seed powder contained 20.90% protein. When jute was used in combination with Moringa oleifera there was significant reduction in turbidity and bacterial count. At 20% jute and 80% Moringa oleifera, best colour removal, turbidity and bacterial count were obtained. Key words-Biocoagulation, Corchorus olitorius, Bacterial count, Jar test


Sign in / Sign up

Export Citation Format

Share Document