scholarly journals Strain Monitoring of an Aluminium Joint with an Optical System

2021 ◽  
Vol 1203 (2) ◽  
pp. 022018
Author(s):  
Ioan Both ◽  
Anamaria Feier ◽  
Mihai Brînduşoiu ◽  
Mirela Achim

Abstract The stresses distribution can be easily determined in the cross-section of the elements but in a joint, the distribution of stresses is more complicated. Its complexity is also increased if stiffeners are added to the joint and if the connecting bolts are not positioned in a regular configuration. An aluminium cantilever with a two bolts connection is experimentally tested to determine the real capacity. Stiffeners reduce the stress intensity in the connection, but they are prone to instability problems if they are subjected to compression. In order to determine the real stress development in the stiffeners, the Digital Image Correlation (DIC) technique was used. This technique determines the strains in the loaded parts which then can be equivalated to the stress distribution. The paper presents the stress development in the compressed stiffeners of an aluminium joint considering also improvement solution for increasing the bending capacity by reducing the instability parameters.

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
A. Mujdeci ◽  
D. V. Bompa ◽  
A. Y. Elghazouli

AbstractThis paper describes an experimental investigation into confinement effects provided by circular tubular sections to rubberised concrete materials under combined loading. The tests include specimens with 0%, 30% and 60% rubber replacement of mineral aggregates by volume. After describing the experimental arrangements and specimen details, the results of bending and eccentric compression tests are presented, together with complementary axial compression tests on stub-column samples. Tests on hollow steel specimens are also included for comparison purposes. Particular focus is given to assessing the confinement effects in the infill concrete as well as their influence on the axial–bending cross-section strength interaction. The results show that whilst the capacity is reduced with the increase in the rubber replacement ratio, an enhanced confinement action is obtained for high rubber content concrete compared with conventional materials. Test measurements by means of digital image correlation techniques show that the confinement in axial compression and the neutral axis position under combined loading depend on the rubber content. Analytical procedures for determining the capacity of rubberised concrete infilled cross-sections are also considered based on the test results as well as those from a collated database and then compared with available recommendations. Rubber content-dependent modification factors are proposed to provide more realistic representations of the axial and flexural cross-section capacities. The test results and observations are used, in conjunction with a number of analytical assessments, to highlight the main parameters influencing the behaviour and to propose simplified expressions for determining the cross-section strength under combined compression and bending.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Edmond Iancu ◽  
Yair Mulian

Abstract Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the “real” next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in [1]. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO corrections to inclusive dijet production are then obtained by integrating out the kinematics of any of the three final partons. We explicitly work out the interesting limits where the unmeasured parton is either a soft gluon, or the product of a collinear splitting. We find the expected results in both limits: the B-JIMWLK evolution of the leading-order dijet cross-section in the first case (soft gluon) and, respectively, the DGLAP evolution of the initial and final states in the second case (collinear splitting). The “virtual” NLO corrections to dijet production will be presented in a subsequent publication.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Bing Yang ◽  
Zhanjiang Wei ◽  
Zhen Liao ◽  
Shuwei Zhou ◽  
Shoune Xiao ◽  
...  

AbstractIn the digital image correlation research of fatigue crack growth rate, the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor, thereby affecting the life prediction. This paper proposes a Gauss-Newton iteration method for solving the crack tip position. The conventional linear fitting method provides an iterative initial solution for this method, and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix. A noise-added artificial displacement field is used to verify the feasibility of the method, which shows that all parameters can be solved with satisfactory results. The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result, and the relative error between the two is only − 0.621%; The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip, and the maximum relative error with the test plastic zone area is − 11.29%. The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%. The crack tip coordinates, stress intensity factors, and plastic zone contour changes in the loading and unloading phases are explored. The results show that the crack tip change during the loading process is faster than the change during the unloading process; the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process; under the same load, the theoretical plastic zone during the unloading process is higher than that during the loading process.


2015 ◽  
Vol 99 ◽  
pp. 353-360 ◽  
Author(s):  
Bataxi ◽  
Xi Chen ◽  
Zhefeng Yu ◽  
Hai Wang ◽  
Cees Bil

2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


2011 ◽  
Vol 70 ◽  
pp. 129-134 ◽  
Author(s):  
Maarten De Strycker ◽  
Pascal Lava ◽  
Wim Van Paepegem ◽  
Luc Schueremans ◽  
Dimitri Debruyne

Residual stresses can affect the performance of steel tubes in many ways and as a result their magnitude and distribution is of particular interest to many applications. Residual stresses in cold-rolled steel tubes mainly originate from the rolling of a flat plate into a circular cross section (involving plastic deformations) and the weld bead that closes the cross section (involving non-uniform heating and cooling). Focus in this contribution is on the longitudinal weld bead that closes the cross section. To reveal the residual stresses in the tubes under consideration, a finite element analysis (FEA) of the welding step in the production process is made. The FEA of the welding process is validated with the temperature evolution of the thermal simulation and the strain evolution for the mechanical part of the analysis. Several methods for measuring the strain evolution are available and in this contribution it is investigated if the Digital Image Correlation (DIC) technique can record the strain evolution during welding. It is shown that the strain evolution obtained with DIC is in agreement with that found by electrical resistance strain gauges. The results of these experimental measuring methods are compared with numerical results from a FEA of the welding process.


2011 ◽  
Vol 83 ◽  
pp. 54-59 ◽  
Author(s):  
Rui Zhang ◽  
Ling Feng He ◽  
Chang Rong Li

Applications of the digital image correlation method (DIC) for the determination of the opening mode stress intensity factor (SIF) is investigated using an edge cracked aluminum plate in this paper. Standard compact tension test specimen was tested under tensile loading and the full-field displacement fields of the test sample were recorded using DIC. The SIF associated with unavoidable rigid-body displacement translation were calculated simultaneously from the experimental data by fitting the theoretical displacement field using the method of least-squares. Selection of displacement and convergence values is discussed. For validation, the SIF thus determined is compared with theoretical results, confirming the effectiveness and accuracy of the proposed technique. Therefore it reveals that the DIC is a practical and effective tool for full-field deformation and SIF measurement.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Andreas Thoma ◽  
Abhijith Moni ◽  
Sridhar Ravi

Digital Image Correlation (DIC) is a powerful tool used to evaluate displacements and deformations in a non-intrusive manner. By comparing two images, one from the undeformed reference states of the sample and the other from the deformed target state, the relative displacement between the two states is determined. DIC is well-known and often used for post-processing analysis of in-plane displacements and deformation of the specimen. Increasing the analysis speed to enable real-time DIC analysis will be beneficial and expand the scope of this method. Here we tested several combinations of the most common DIC methods in combination with different parallelization approaches in MATLAB and evaluated their performance to determine whether the real-time analysis is possible with these methods. The effects of computing with different hardware settings were also analyzed and discussed. We found that implementation problems can reduce the efficiency of a theoretically superior algorithm, such that it becomes practically slower than a sub-optimal algorithm. The Newton–Raphson algorithm in combination with a modified particle swarm algorithm in parallel image computation was found to be most effective. This is contrary to theory, suggesting that the inverse-compositional Gauss–Newton algorithm is superior. As expected, the brute force search algorithm is the least efficient method. We also found that the correct choice of parallelization tasks is critical in attaining improvements in computing speed. A poorly chosen parallelization approach with high parallel overhead leads to inferior performance. Finally, irrespective of the computing mode, the correct choice of combinations of integer-pixel and sub-pixel search algorithms is critical for efficient analysis. The real-time analysis using DIC will be difficult on computers with standard computing capabilities, even if parallelization is implemented, so the suggested solution would be to use graphics processing unit (GPU) acceleration.


Sign in / Sign up

Export Citation Format

Share Document