scholarly journals Aerodynamic analysis of aircraft model using indigenously developed wind tunnel facility

2021 ◽  
Vol 1206 (1) ◽  
pp. 012013
Author(s):  
D Makhija ◽  
S V Jain ◽  
A M Achari ◽  
K Ghosh

Abstract This paper presents a design of force balance setup that can measure lift force acting on the aircraft model. The setup was developed indigenously and installed in an open circuit low-speed wind tunnel. It mainly consists of two components viz. a traverse mechanism that can hold the model in the test section at different angles of attack and air speeds and a supporting frame to hold the traverse mechanism over it. The spring balances are used to obtain lift force readings at different angles and air speeds. The experimental and numerical investigations were done in the wide range of Reynolds number (range: 0.55 to 1.12 lakh) and angle of attack (range: -6° to 20°). The results are presented in terms of pressure contours, velocity contours, pressure coefficient and lift coefficient. From the experiments it was found that value of lift coefficient increases with angle of attack and stalling occurs at 18° for all the air speeds. However, in the numerical results the stalling was observed little earlier than 18° angle of attack. The experimental results were compared with CFD results and an average relative error of 18% was observed which may be due to assumption of 2-D airfoil in CFD analysis.

Author(s):  
AA Mehraban ◽  
MH Djavareshkian

Sinusoidal leading-edge wings have attracted many considerations since they can delay the stall and enhance the maneuverability. The main contribution of this research study is to experimentally investigate effects of ground on aerodynamic performance of sinusoidal leading-edge wings. To this end, 6 tubercled wings with different amplitudes and wavelengths are fabricated and compared with the baseline wing which has smooth leading-edge. Proposed wings are tested in different distances from the ground in a wind tunnel lab for a wide range of angle of attack from 0° to 36° and low Reynolds number of 45,000. Results indicated that lift coefficient is improved when wings get close to the ground. Furthermore, increment of protuberance amplitude in the vicinity of the ground could efficiently prevent stalling particularly for shorter wavelength.


1971 ◽  
Vol 55 (3) ◽  
pp. 833-845 ◽  
Author(s):  
C. J. PENNYCUICK

1. A bat was trained to fly in a tilting wind tunnel. Stereoscopic photographs were taken, both by reflected and by transmitted light, and measurements of best gliding angle were made. 2. Variation of wing span and area at different speeds was much less than in birds. This is attributed to the construction of the wing, which prevents the bat from folding back the manus in flight, because this would lead to collapse of the plagiopatagium. 3. The trailing edge of the wing is normally deflected upwards in flight, at least in the distal parts. This is interpreted as providing longitudinal stability. The plagiopatagialis proprii muscles appear to act as an elevator, by deflecting the trailing edge of the plagiopatagium upwards. 4. The speed range over which the bat could glide was 5·3-11·0 m/s. Its maximum lift coefficient was 1·5, and its best glide ratio 6·8:1. The Reynolds number range, based on mean chord, was 3·26 x 104 to 6·79 x 104. 5. A simple regression analysis of the glide polar indicated a very high span efficiency factor (k) and low wing profile drag coefficient (Cdp). On the other hand, a drag analysis on the assumption that k = 1 leads to an improbably large increase in the estimated Cdp at low speeds. It is suggested that the correct interpretation probably lies between these extremes, with k ≊ 1·5; Cdp would then be about 0·02 at high speeds, rising to somewhat over 0·1 at the minimum speed. 6. It would appear that the bat is not so good as a pigeon at fast gliding, but better at low-speed manoeuvring. On most points of performance, however, the two are remarkably similar.


2021 ◽  
Author(s):  
Masateru Maeda ◽  
Natsuki Harada ◽  
Hiroto Tanaka

Hydrodynamic performance of a gliding penguin flipper (wing) considering the backward sweep was estimated with computational fluid dynamics (CFD) simulation. A flipper of a gentoo penguin (Pygoscelis papua) was 3D scanned, smoothed, and a numerical fluid mesh was generated. For accurate yet resource-saving computation, an embedded large-eddy simulation (ELES) methods was employed, where the flow near the flipper was solved with large-eddy simulation (LES) and flow far away from the flipper was solved with Reynolds-averaged Navier-Stokes (RANS). The relative flow speed was fixed at 2 m s-1, close to the typical foraging speed for the penguin species. The sweep angle was set to be 0°, 30°, and 60°, while the angle of attack was varied between -40° and 40°, both are within the realistic ranges in the wing kinematics measurement of penguins in an aquarium. It was revealed that a higher sweep angle reduces the lift slope, but the lift coefficient is unchanged at a high angle of attack. Drag coefficient was reduced across the angles of attack with increasing the sweep angles. The drag polars suggest the sweep angle may be adjusted with the change in swimming speed and anhedral (negative dihedral) angle to minimise drag while maintaining the vertical force balance to counteract the positive buoyancy. This will effectively expand the swimming envelope of the gliding penguin, similar to a flying counterpart such as swift.


2019 ◽  
Vol 131 ◽  
pp. 01120
Author(s):  
Lei Wang ◽  
Lu Min Wang ◽  
Yong Li Liu ◽  
Wen Wen Yu ◽  
Guang Rui Qi ◽  
...  

The effect of board bending degree on hydrodynamic performances of a single-layer cambered otter-board was investigated using engineering models in a wind tunnel. Three different bending degree boards were evaluated at a wind speed of 28 m/s. Parameters measured included: drag coefficient Cx, lift coefficient Cy, pitch moment coefficient Cm, center of pressure coefficient Cp , over a range of angle of attack (0° to 70°). These coefficients were used in analyzing the differences in the performance among the three otter-board models. Results showed that the bending of the board(No. 2, No. 3) increased the water resistance of the otter-board, and improved the lift coefficient of the otter-board in the small angle of attack (0°<α≤20 °) ; the maximum lift coefficients Cy of otter-board model (No. 1) was higher (1.680, α = 25°). the maximum lift–drag ratios of models (No. 1, No. 2 and No. 3) are 6.822 (α = 7.5 °), 6.533 (α = 2.5 °) and 6.384 (α = 5.0°), which showed that the board bending reduces the lift-to-drag ratio of the otter-board.The stability of the No. 3 model was better than those two models (No. 1, No. 2) in most range of attack angle, but No. 1 otter-board model had a better stability in roll of otter-board. The findings of this study can offer useful reference data for the structural optimization of otter-boards for trawling.


Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 23 ◽  
Author(s):  
David Communier ◽  
Ruxandra Mihaela Botez ◽  
Tony Wong

This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48.


2014 ◽  
Vol 553 ◽  
pp. 255-260
Author(s):  
Viktor Šajn ◽  
Igor Petrović ◽  
Franc Kosel

In the paper, numerical and experimental study of low Reynolds number airflow around the deformable membrane airfoil (DMA) is presented. Simulations of a fluid-structure interaction between the fluid and the DMA were performed. In the experiment, the DMA model was made from a thin PVC sheet, which was wrapped around the steel rod at the leading and trailing edge. Measurements were performed in a wind tunnel at a chord Reynolds number of 85.7·103, over the angle of attack range from 0° to 15° and DMA shortening ratio from 0.025 to 0.150. Simulations were in an agreement with the experiment, since the average relative difference of coefficient of lift was smaller than 7.3%. For the same value of Reynolds number, DMA shows improved lift coefficient Cy= 2.18, compared to standard rigid airfoils.


Author(s):  
Aline Aguiar da Franca ◽  
Dirk Abel

This article presents a concept of test section for a closed-return wind tunnel, where the lift force of an airfoil, which depends on the angle of attack, is controlled in real-time. This airfoil is used to represent a wind turbine blade. The lift force of the blades is what produces the rotor torque of the wind turbine. This torque determines the amount of energy that will be captured by the wind turbine. The linear dynamics of the motor used to change the angle of attack and the static non-linearity of the airfoil are modeled as a Wiener model. The Quadratic Dynamic Matrix Controller based on Wiener model with linearizing pre-compensation is implemented to keep the lift force constant, which is desirable to avoid mechanical loads for wind turbine applications.


2005 ◽  
Vol 33 (3) ◽  
pp. 195-207 ◽  
Author(s):  
Z. Husain ◽  
M. Z. Abdullah ◽  
T. C. Yap

The two-dimensional analysis, using computational fluid dynamics (CFD), of tandem/staggered arranged airfoils of the canard and wing of an Eagle 150 aircraft and also the aerodynamic tests conducted in an open-circuit wind tunnel are presented in the paper. The wind tunnel tests were carried out at a speed of 38m/s in a test section of size 300 mm (width), 300 mm (height) and 600 mm (length), at Reynolds number 2.25 × 105. The tests were carried out with tandem and staggered placement of the airfoils in order to determine the optimum position of the wing with respect to the canard and also to determine the lift coefficient at various angles of attack. The CFD code FLUENT 5 was used to investigate the aerodynamic performance of a two-dimensional model to validate the wind tunnel results. The flow interaction was studied in the tandem and staggered arrangements in the wind tunnel as well as by the computational method. The k-ε turbulence model gave exceptionally good results.


2020 ◽  
Vol 5 (1) ◽  
pp. 35-40
Author(s):  
Ali Akbar

Airfoil is an aerodynamic form intended to produce a lift force with the smallest drag force. When an airfoil is passed through a fluid flow that causes interaction between the air flow and the surface, variations in velocity and pressure will occur along the top and bottom surfaces of the airfoil, as well as the front and back of the airfoil. The difference in pressure between the upper and lower surface of the airfoil is what causes the resultant force in the direction perpendicular to the direction of fluid flow, this force is called the lift force (lift). In this experiment NACA 0012 airfoil experiments have been carried out using simple wind tunnel. Experiments were conducted with the aim to determine the effect of the angle of attack on the performance of the NACA 0012 airfoil which then analyzed the lift force of the NACA 0012 airfoil. The variation of the angle of attack used was 0 °, 3 °, 6 °, 9 °, 12 °, and 15 ° and used wind speed of 21.5 m / s. The greatest lift force is obtained at an angle of attack of 9 ° with a value of 0.981 while the largest lifting coefficient with a value of 0.106. The greater the angle of attack the greater the airfoil lift force, but for symmetrical airfoil stall at an angle that is too large


2004 ◽  
Vol 127 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Mei Feng ◽  
Jaime Gonzalez ◽  
James A. Olson ◽  
Carl Ollivier-Gooch ◽  
Robert W. Gooding

Pressure screening is an efficient means of removing various contaminants that degrade the appearance and strength of paper. A critical component of a screen is the rotor, which induces a tangential velocity to the suspension and produces pressure pulses to keep the screen apertures clear. To understand the effect of key design and operating variables for a NACA foil rotor, a computational fluid dynamic (CFD) simulation was developed using FLUENT, and the results were compared to experimental measurements. Comparing the pressure pulses obtained through CFD to experimental measurements over a wide range of foil tip speeds, clearances, angles of attack, and foil cambers, general trends of the pressure pulses were similar, but the overall computed values were 40% smaller than the measured values. The pressure pulse peak was found to increase linearly with the square of tip speed for all the angles of attack studied. The maximum magnitudes of negative pressure pulse occurred for the NACA 0012 and 4312 foils at a 5deg angle of attack and for the NACA 8312 foil at 0deg. The stall angle of attack was found to be ∼5deg for NACA 8312, ∼10deg for NACA 4312, and ∼15deg for NACA 0012. The positive pressure peak near the leading edge of the foil was eliminated for foils operating at a positive angle of attack. The magnitude of the negative pressure coefficient peak increased as clearance decreased. Increased camber increases both the magnitude and width of the negative pressure pulse.


Sign in / Sign up

Export Citation Format

Share Document