scholarly journals Influence of accelerated aging on bending strength of particleboards

2021 ◽  
Vol 1208 (1) ◽  
pp. 012030
Author(s):  
Hasan Talić ◽  
Minka Ćehić

Abstract Particleboards are used in the manufacture of furniture, as well as the furnishing of structures and prefabricated homes. Their quality dictates where they can be used and how long they can last. The boards’ characteristics deteriorate as they are used. To examine the change-degradation of the properties of the boards are exposed to the effects of the external climate (rain, snow, wind, sun) or regimes of accelerated aging. For this purpose, a degradation test of the properties of wood-based panels was performed, which aims to create a model that will describe the change in bending strength of the mentioned panels. The paper presents the results of bending strength and thickness swelling tests of 16 mm thick particleboards that were exposed to accelerated aging regimes, and the basic model of property degradation.

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


2014 ◽  
Vol 631 ◽  
pp. 18-22 ◽  
Author(s):  
Junji Ikeda ◽  
Takayuki Murakami ◽  
Takayoshi Shimozono ◽  
Reiji Watanabe ◽  
Mikio Iwamoto ◽  
...  

Low temperature degradation free Zirconia toughened alumina (ZTA) has been developed. It is reported that ZTA has higher mechanical strength compared to alumina due to the stress induced transformation and spontaneously transformation of zirconia phase on some ZTA have been occurred. For achieving the higher reliability of artificial joint prosthesis alternative to alumina and other ceramic materials, it is necessary to improve and validate the both mechanical characteristics and phase stability at the same time. We evaluated that microstructure, mechanical characteristics and phase stability of newly developed ZTA (BIOCERAM®AZUL). It was confirmed that four-point bending strength and weibull modulus were extreamly high, and ZTA has higher reliability. There were no significant changes and deterioration in four-point bending strength, crystal structure and wear property with and without accelerated aging test. Newly developed ZTA not only with high mechanical characteristics but also with phase stability could be quite useful as bearing materials in artificial joints for longer clinical use.


2021 ◽  
Vol 114 ◽  
pp. 70-75
Author(s):  
Radosław Auriga ◽  
Piotr Borysiuk ◽  
Alicja Auriga

An attempt to use „Tetra Pak” waste material in particleboard technology. The study investigates the effect of addition Tetra Pak waste material in the core layer on physical and mechanical properties of chipboard. Three-layer chipboards with a thickness of 16 mm and a density of 650 kg / m3 were manufactured. The share of Tetra Pak waste material in the boards was varied: 0%, 5%, 10% and 25%. The density profile was measured to determine the impact of Tetra Pak share on the density distribution. In addition, the manufactured boards were tested for strength (MOR, MOE, IB), thickness swelling and water absorption after immersion in water for 2 and 24 hours. The tests revealed that Tetra Pak share does not affect significantly the value of static bending strength and modulus of elasticity of the chipboard, but it significantly decreases IB. Also, it has been found that Tetra Pak insignificantly decreases the value of swelling and water absorption of the chipboards.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1750 ◽  
Author(s):  
Radosław Mirski ◽  
Pavlo Bekhta ◽  
Dorota Dziurka

This study examined the effects of selected types of thermoplastics on the physical and mechanical properties of polymer-triticale boards. The investigated thermoplastics differed in their type (polypropylene (PP), polyethylene (PE), polystyrene (PS)), form (granulate, agglomerate) and origin (native, recycled). The resulting five-ply boards contained layers made from different materials (straw or pine wood) and featured different moisture contents (2%, 25%, and 7% for the face, middle, and core layers, respectively). Thermoplastics were added only to two external layers, where they substituted 30% of straw particles. This study demonstrated that, irrespective of their type, thermoplastics added to the face layers most favorably reduced the hydrophobic properties of the boards, i.e., thickness, swelling, and V100, by nearly 20%. The bending strength and modulus of elasticity were about 10% lower in the experimental boards than in the reference ones, but still within the limits set out in standard for P7 boards (20 N/mm2 according to EN 312).


2013 ◽  
Vol 744 ◽  
pp. 366-369
Author(s):  
Juan Wei ◽  
Dan Zeng ◽  
Ming Jie Guan

In this paper, the bending properties of bamboo-wood container flooring and bamboo curtain-OSB container flooring were tested and the six-cycle artificial accelerated aging method of ASTM D1037 was conducted to evaluate the aging performance of two kinds of bamboo-wood container floorings. The modulus of rupture (MOR) and modulus of elasticity (MOE) were tested in the longitudinal and transverse directions before and after aging. The results showed that both the bending strength and MOE decreased after aging. The retention ratios of MOR of the bamboo-wood container flooring and bamboo curtain-OSB container flooring were respectively 43.5%, 72.0%, and the retention ratios of MOE were 54.6%, 76.3%. In general, the effect of aging on the bamboo-wood container flooring was larger than that on the bamboo curtain-OSB container flooring.


2013 ◽  
Vol 25 (05) ◽  
pp. 1340003
Author(s):  
Tsai-Chin Shih ◽  
Che-Tong Lin ◽  
Sheng-Yang Lee ◽  
Wei-Jen Chang ◽  
Nai-Chia Teng ◽  
...  

Introduction: The formation of a stereocomplex between PLLA and PDLA has been studied intensively because it increases the mechanical performance and thermal/hydrolytic resistance of polylactide-based materials; however, few studies have investigated the stereocomplex formation between PLLA and the (D-lactide)-containing PLLA copolymer. To investigate the effect of the D-lactide content of PLLA on the thermal behaviors and mechanical properties, (5D/95L) polylactide [(5D/95L)PLA], which contains a molar ratio of 5% of the D-form and 95% of the L-form of the monomer, and (15D/85L) polylactide [(15D/85L)PLA], which contains a molar ratio of 15% of the D-form and 85% of the L-form of the monomer, were used in a series of specimens. For the hydrolytic degradation test, the specimens were placed in 20-mL vials, which were filled with phosphate-buffered solution; the vials were allowed to stand at 57°C for 91 days in accordance with the ASTM F1635-95 (2000) standard test method for in vitro studies. The mechanical properties, thermal properties and crystallization behaviors were investigated using DSC and MTS, respectively. Results: The initial bending strength of the (5D/95L)PLA and (15D/85L)PLA were 35.4 and 31.1 N, respectively. After 1 week, the binding strength of the (5D/95L)PLA increased by 9.8%, and the binding strength of the (15D/85L)PLA decreased by 26%. In addition, the DSC curve of the (5D/95L)PLA demonstrated a higher melting temperature in the 1st week, and this Tc was observed in the DSC curve of the (5D/95L)PLA only during this time. The DSC curve of the (15D/85L)PLA was irregular. Discussion & Conclusions: In the (5D/95L)PLA, the recrystallization that occurred during the hydrolysis process was confirmed by the Tc and the increase in the bending strength. The stereocomplex crystallites may be formed in the (15D/85L)PLA during the degradation process. Because of the increase in the D-form monomer, the stereocomplexes were generated more easily and acted as nucleation sites. The PLLA crystal near the stereocomplex crystallites exhibited an incomplete structure, which led to a faster decrease in the bending strength. The low D-lactide content in the matrix of the PLLA did not form a stereocomplex crystallite because the surface area was not large enough to act as a nucleation site. However, the higher D-lactide-containing fraction formed a large stereocomplex crystallite. The (5D/95L)PLA demonstrated better thermal/hydrolytic resistance and mechanical stability than the (15D/85L)PLA.


2020 ◽  
Vol 14 (1) ◽  
pp. 66-75
Author(s):  
Behnam Mehdipour ◽  
Hamid Hashemolhosseini ◽  
Bahram Nadi ◽  
Masoud Mirmohamadsadeghi

The purpose of this research is to investigate the performance and efficiency of reinforced slope in the stability of geocell layers in unsaturated soil conditions. Slope reinforced with geocell acts like a beam in the soil due to the geocell having a height (three-dimensional). Due to its flexural properties, it has moment of inertia as well as bending strength, which reduces the displacement and increases the safety factor of the slope. Taking into consideration unsaturated conditions of soil contributes a lot to making results close to reality. One of the well-known models among elastoplastic models for modeling unsaturated soils is Barcelona Basic Model, which has been added to the FLAC2D software by codification. Changes in thickness, length and number of geocell layers are remarkably effective on slope stability. The results show that the geocell's reinforcing efficiency depends on the number of layers and depth of its placement. As the depth of the geocell's first layer increases, the lateral and vertical side elevation of the upper part of the slope increases with respect to the elevation. Load capacity increases with increasing geocell length. By increasing the length of the geocell layer, the joint strength, the mobilized tensile strength, and the bending moment are increased. At u/H = 0.2, an increase in the bending momentum of about 20% occurs with increasing geocell thickness. In u/H = 1, the increase in bending momentum is 10.4%. In addition, by increasing the thickness of the geocell, the Value of moment of the inertia increases and, as a result, the amount of geocell reinforcement bending moment increases.


2020 ◽  
Vol 10 (15) ◽  
pp. 5253 ◽  
Author(s):  
Wen Jiang ◽  
Stergios Adamopoulos ◽  
Reza Hosseinpourpia ◽  
Jure Žigon ◽  
Marko Petrič ◽  
...  

Bark as a sawmilling residue can be used for producing value-added chemicals and materials. This study investigated the use of partially liquefied bark (PLB) for producing particleboard with or without synthetic adhesives. Maritime pine (Pinus pinaster Ait.) bark was partially liquefied in the presence of ethylene glycol and sulfuric acid. Four types of particleboard panels were prepared with a PLB content of 4.7%, 9.1%, 20%, and 33.3%, respectively. Another five types of particleboard panels were manufactured by using similar amounts of PLB and 10 wt.% of melamine–urea–formaldehyde (MUF) adhesives. Characterization of bark and solid residues of PLB was performed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and automated vapor sorption (AVS). Mechanical and physical properties of the particleboard were tested according to the European standards EN 310 for determining modulus of elasticity and bending strength, EN 317 for determining thickness swelling after immersion in water, and EN 319 for determining internal bond strength. The results showed that the increase in PLB content improved the mechanical strength for the non-MUF boards, and the MUF-bonded boards with up to 20% of PLB met the requirements for interior uses in dry conditions according to EN 312. The non-MUF boards containing 33.3% of PLB and the MUF-bonded boards showed comparable thickness swelling and water absorption levels compared to the reference board.


2010 ◽  
Author(s):  
M. A. Jamaludin ◽  
S. A. Bahari ◽  
K. Nordin ◽  
T. F. T. Soh ◽  
Mohamad Rusop ◽  
...  

2016 ◽  
Vol 842 ◽  
pp. 103-128
Author(s):  
Kang Chiang Liew ◽  
Singan Grace

Utilisation of forest plantation species such as Acacia hybrid has been used in wood-based industry as an alternative to solid wood that was usually attained from natural forest. While, the under-utilised species such as Mangifera sp. is not often been used as raw material for wood products, in this study, laminated veneer lumber (LVL) has been produced from Acacia hybrid and Mangifera sp. The physical and mechanical properties of LVL were determined and compared. For physical testing, the range value of moisture content was 9.41% to 14.56%, Density was 487.90 kg/m3 to 699.10 kg/m3, thickness swelling was between 0.20% to 6.05%, water absorption between 32.71% to 91.25%, and rate of delamination from 0% to 100%. Mangifera sp. LVL has higher moisture content, rate of delamination, and water absorbency. In mechanical testing, it is been found that Acacia hybrid LVL has overall higher strength compared to Mangifera sp. LVL, in terms of static bending strength (MOR and MOE), shear strength, and compression strength. Range of value for MOR was between 10.27 N/mm2 to 129.99 N/mm2, MOE between 1138 N/mm2 to 16472.93 N/mm2, shear strength between 0.43 N/mm2 to 3.40 N/mm2, and compression between 139.45 N/mm2 to 6749.74 N/mm2. For physical testing, the overall result of p-value for moisture content, water absorption, and delamination were significant at p ≤ 0.05, while density and thickness swelling were not significant at p ≥ 0.05. For overall result, the p-value for static bending strength (MOR and MOE) was significant at p ≤ 0.05 while for shear strength and compression strength were not significant at p ≥ 0.05.


Sign in / Sign up

Export Citation Format

Share Document