An attempt to use „Tetra Pak” waste material in particleboard technology

2021 ◽  
Vol 114 ◽  
pp. 70-75
Author(s):  
Radosław Auriga ◽  
Piotr Borysiuk ◽  
Alicja Auriga

An attempt to use „Tetra Pak” waste material in particleboard technology. The study investigates the effect of addition Tetra Pak waste material in the core layer on physical and mechanical properties of chipboard. Three-layer chipboards with a thickness of 16 mm and a density of 650 kg / m3 were manufactured. The share of Tetra Pak waste material in the boards was varied: 0%, 5%, 10% and 25%. The density profile was measured to determine the impact of Tetra Pak share on the density distribution. In addition, the manufactured boards were tested for strength (MOR, MOE, IB), thickness swelling and water absorption after immersion in water for 2 and 24 hours. The tests revealed that Tetra Pak share does not affect significantly the value of static bending strength and modulus of elasticity of the chipboard, but it significantly decreases IB. Also, it has been found that Tetra Pak insignificantly decreases the value of swelling and water absorption of the chipboards.

2019 ◽  
Vol 70 (3) ◽  
pp. 221-228
Author(s):  
Abdullah Istek ◽  
Ismail Ozlusoylu

In this study, the effect of mat moisture content on the physical and mechanical properties of particleboard was investigated. The experimental boards were produced by using 40 % softwood, 45 % hardwood chips, and 15 % sawdust. The formaldehyde resin/adhesive was used in three-layers (bottom-top layer 12 %, core layer 8 %). Multi-opening press was used during manufacturing the experimental particleboards. The physical and mechanical properties of boards obtained were identified according to the TS-EN standards. The optimum core layer moisture content was determined as 6 % and 7 % according to the results, whereas the moisture content of bottom and top layers was 14 %. Under these moisture content conditions, the bending strength was found to be 13.3 N/mm², the modulus of elasticity in bending 2466 N/mm², and internal bonding strength 0.44 N/mm². The optimum bottom-top layer moisture content was determined to be between 13 % and 15 % and 6.5 % for the core layer.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1102 ◽  
Author(s):  
Ladislav Reinprecht ◽  
Miroslav Repák

The European beech (Fagus sylvatica L.) wood was thermally modified in the presence of paraffin at the temperatures of 190 or 210 °C for 1, 2, 3 or 4 h. A significant increase in its resistance to the brown-rot fungus Poria placenta (by 71.4%–98.4%) and the white-rot fungus Trametes versicolor (by 50.1%–99.5%) was observed as a result of all modification modes. However, an increase in the resistance of beech wood surfaces to the mold Aspergillus niger was achieved only under more severe modification regimes taking 4 h at 190 or 210 °C. Water resistance of paraffin-thermally modified beech wood improved—soaking reduced by 30.2%–35.8% and volume swelling by 26.8%–62.9% after 336 h of exposure in water. On the contrary, its mechanical properties worsened—impact bending strength decreased by 17.8%–48.3% and Brinell hardness by 2.4%–63.9%.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1750 ◽  
Author(s):  
Radosław Mirski ◽  
Pavlo Bekhta ◽  
Dorota Dziurka

This study examined the effects of selected types of thermoplastics on the physical and mechanical properties of polymer-triticale boards. The investigated thermoplastics differed in their type (polypropylene (PP), polyethylene (PE), polystyrene (PS)), form (granulate, agglomerate) and origin (native, recycled). The resulting five-ply boards contained layers made from different materials (straw or pine wood) and featured different moisture contents (2%, 25%, and 7% for the face, middle, and core layers, respectively). Thermoplastics were added only to two external layers, where they substituted 30% of straw particles. This study demonstrated that, irrespective of their type, thermoplastics added to the face layers most favorably reduced the hydrophobic properties of the boards, i.e., thickness, swelling, and V100, by nearly 20%. The bending strength and modulus of elasticity were about 10% lower in the experimental boards than in the reference ones, but still within the limits set out in standard for P7 boards (20 N/mm2 according to EN 312).


FLORESTA ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 419
Author(s):  
Giuliano Ferreira Pereira ◽  
Setsuo Iwakiri ◽  
Rosilani Trianoski ◽  
Polliana D'angelo Rios ◽  
Renan Zunta Raia

The objective of this research was to evaluate the effects of thermal modifications, at different temperatures and exposure times, on the technological properties of mixed particleboard / OSB panels made out of Eucalyptus badjensis. Using the wood of Eucalyptus badjensis, Particleboard, OSB and mixed Particleboard/OSB panels (control and thermally modified) were manufactured. The mixed panels’ thermal modification was carried out under three temperatures (180ºC, 200ºC and 220ºC) and two exposure times (10 minutes and 12 minutes). For the panels’ manufacturing, 6% of phenol-formaldehyde adhesive and 1% of paraffin were employed, which was calculated based on the particles’ dry mass. The water absorption and thickness swelling properties were evaluated after 2 and 24 hours of immersion, in addition to the panels’ modulus of elasticity, modulus of rupture and internal bond. Based on the results, we were able to conclude that the thermal modification affected most of the physical properties positively. From the different exposure times studied, the most effective one was the period of 12 minutes, especially for water absorption after 2 hours, which caused a reduction of 11.27%. In turn, the most effective temperature was of 220ºC, highlighting the thickness swelling after 24 hours, which caused a swelling decrease of 23.76% in comparison with the control panels. Regarding the mechanical properties, the thermal modification, in terms of the studied exposure times and temperatures, did not affect the results of the mixed particleboard /OSB panels. 


2021 ◽  
Vol 9 (3) ◽  
pp. 454-465
Author(s):  
Tengku Muhammad Renzy Hariz ◽  
Indra Agus Santosa ◽  
Muhammad Iqbal Maulana ◽  
Marwanto ◽  
Denni Prasetia ◽  
...  

The objectives of this research were to evaluate bamboo-oriented strand board (BOSB) characteristics made from betung (Dendrocalamus asper), ampel (Bambusa vulgaris), and their mixtures at two different contents (3% and 5%) of methylene diphenyl di-isocyanate (MDI) adhesives. The strands were steam-treated at 126°C for 1 h under the pressure of 0.14 MPa. Three-layered BOSBs with a target density of 0.7 g/cm3 were made with the size of 30 cm x 30 cm x 0.9 cm and a shelling ratio of 1:2:1 (face:core:back layers). The physical and mechanical properties of BOSB were evaluated following JIS A 5908 (2003) standard, and the results were compared with the CSA 0437.0 Grade O-1 standard. The results show that BOSB from the mixtures of betung and ampel bamboo strands has higher dimensional stability as shown by the decrease in water absorption and thickness swelling and higher mechanical properties than single BOSB. All BOSBs with 5% resin content have higher dimensional stability, MOE, and MOR than BOSB with 3% resin content. The physical and mechanical properties of all BOSB manufactured met the CSA 0437.0 Grade O-1 standard. This study proved that BOSBs from the mixture of betung and ampel strands have the potential to be developed due to having better physical and mechanical qualities than a single BOSB. Keywords: ampel (Bambusa vulgaris), bamboo oriented strand board, betung (Dendrocalamus asper), resin content, strand mixtures


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3566-3584
Author(s):  
Qingde Li ◽  
Yingyi Liang ◽  
Feng Chen ◽  
Tonghui Sang

Wood fiber was modified by impulse-cyclone drying treatment with poplar and montmorillonite as reinforcing materials; mMMT/polypropylene/wood fiber foaming composite was prepared by the hot compression process. The effects of modification, temperature, and content of montmorillonite on physical and mechanical properties of the composite were analyzed. Mechanical properties, porosity, shrinkage, water absorption, and thickness swelling tests showed that when mMMT reinforcement was 5 wt%, the best performance was achieved. The scanning electron microscopy observations showed that bubble holes were distributed widely and evenly, and mMMT appeared in the cell gap and was encapsulated by polypropylene, which maximized the bonding effect. Flexural strength was 27.5 MPa, flexural modulus was 2110 MPa, tensile strength was 20.0 MPa, and impact strength was 6.30 KJ/m2. When absolute volume of dense solid reached 70.8 cm3, porosity was 21.4% and shrinkage was 1.17%, which indicated that the water absorption increased most remarkably under that test condition. When equilibrium water absorption reached 9.28%, the thickness swelling decreased by 25%. The results showed that mMMT effectively optimized mechanical properties of wood-based foamed composites and improved hygroscopic properties.


2011 ◽  
Vol 3 (1) ◽  
pp. 7
Author(s):  
Sari Mirad Noor

The need of log increace rapidly, mean while forest product decrease, so efficiency on wood process should be done wisely, in the other hand plastic waste is uncompossed material, become an environmental problems. This research aims to determine the impact of particles of type HDPE plastic wastes and twigs/branches of rubber on some physical and mechanical properties of wood. Physical properties have been tested for water content, density, thickness, and water absorption. Although mechanical properties tests were tough Broken/Module of Rufture (MOR) and the preservation of architecture/modulus of elasticity (MOE).     The raw materials used are polyethylene of high density of waste plastic and rubber adhesive urea formaldehyde branch branch. Experimental design used the randomized Completely Design (RCD) 5 x 4, in which each treatment became much like 5 times replicated).The treatment used is the diversity of the composition of the waste of plastic of different types of polyethylene of high density provides a significant effect on the content of water, water absorption, the density and the development of thickness. With regard to the persistence and the fracture of the arch determination not to give a significant effect.Keywords: physical and mechanical properties, particle board, HDPE plastic waste, branch/twig of  rubber.


2016 ◽  
Vol 842 ◽  
pp. 103-128
Author(s):  
Kang Chiang Liew ◽  
Singan Grace

Utilisation of forest plantation species such as Acacia hybrid has been used in wood-based industry as an alternative to solid wood that was usually attained from natural forest. While, the under-utilised species such as Mangifera sp. is not often been used as raw material for wood products, in this study, laminated veneer lumber (LVL) has been produced from Acacia hybrid and Mangifera sp. The physical and mechanical properties of LVL were determined and compared. For physical testing, the range value of moisture content was 9.41% to 14.56%, Density was 487.90 kg/m3 to 699.10 kg/m3, thickness swelling was between 0.20% to 6.05%, water absorption between 32.71% to 91.25%, and rate of delamination from 0% to 100%. Mangifera sp. LVL has higher moisture content, rate of delamination, and water absorbency. In mechanical testing, it is been found that Acacia hybrid LVL has overall higher strength compared to Mangifera sp. LVL, in terms of static bending strength (MOR and MOE), shear strength, and compression strength. Range of value for MOR was between 10.27 N/mm2 to 129.99 N/mm2, MOE between 1138 N/mm2 to 16472.93 N/mm2, shear strength between 0.43 N/mm2 to 3.40 N/mm2, and compression between 139.45 N/mm2 to 6749.74 N/mm2. For physical testing, the overall result of p-value for moisture content, water absorption, and delamination were significant at p ≤ 0.05, while density and thickness swelling were not significant at p ≥ 0.05. For overall result, the p-value for static bending strength (MOR and MOE) was significant at p ≤ 0.05 while for shear strength and compression strength were not significant at p ≥ 0.05.


Author(s):  
Ishaya Musa Dagwa ◽  
O. Ojo

In Recent Times, Environmental Concerns Arising from Pollution, Global Warming and Waste Management Have Led to the Generation of Interest in the Use of Environmentally Friendly Materials, Especially, Biological Materials such as Natural Fibres and Particulates in Composite Materials Manufacture. in this Work, Natural Fillers (Afara-Mahogany Particulates of 150µm) and Fibre (Caesar Weed Fibre of 5mm Length) Were Mixed with Epoxy Resin at the Various Fibre/filler Weight Percentages as Follows: 2%, 4%, 6%, 8% and 10% with Random Fibre Orientations. some Physical and Mechanical Properties of the Composite Were Determined Using Standard Procedures. Ninety (90) Wt% of Epoxy Resin Mixed with 10 Wt% for each of the Following: Caeser Weed Fibre, Afara and Mahogany, Improved the Tensile Modulus by 2652.6%, 321.37%, and 129.73% and the Impact Strength by 162.7%, 133.9% and 15.25%, Respectively. Also, Composites Density Reduced by 26.26%, 3.03%, and 3.03%, and its Hardness too Reduced by 5.41%, 1.35%, and 4.05%, Respectively. Meanwhile, the Water Absorption Were 4.9%, 2.79%, and 4.12% for 10wt% of Caeser Weed Fibre, Afara and Mahogany, Respectively and 90wt% Epoxy Resin. Therefore, Caeser Weed Fibre Had the Greatest Positive Effect on the Tensile Strength, Impact Energy Absorbed and Density. however, Afara-Epoxy Composite Had the Least Water Absorption and Higher Shore Hardness Value than Mahogany-Epoxy and Caeser Weed Fibre-Epoxy Composites.


Sign in / Sign up

Export Citation Format

Share Document