scholarly journals The functionalization of pyrolyzed palm empty fruit bunches-based membranes adsorbent by fourier-transform infrared spectroscopy

2022 ◽  
Vol 1212 (1) ◽  
pp. 012026
Author(s):  
N Hidayah ◽  
V D Putri ◽  
M Elma ◽  
Mahmud ◽  
I Syauqiah ◽  
...  

Abstract Membranes adsorbent are successfully prepared derived from palm empty fruit bunches (PEFB) which pyrolyzed by furnace as physical activation. The PEFB membrane adsorbent was activated to develop porous structures and surface area which able to be applied for gas separation. The aims of this study are to fabricated the pyrolyzed PEFB-based membrane adsorbent with different loading of PEFB mass to identify the surface organic functional groups of the PEFB membrane adsorbent. Fabrication of this membrane adsorbent was conducted into three steps, i.e. (1) pre-treated PEFB materials; (2) pyrolyzed the PEFB adsorbent at 500°C; and (3) PEFB membrane adsorbent fabrication by mixed both of PVA and PEG polymers into PEFB adsorbent with varied mass (15-17.5 grams). The functionalization of this membrane adsorbents was analysed by Fourier Transform Infra-Red (FTIR) spectra. The result shows the three variations of the PEFB membrane adsorbents present the surface oxygen, functional group. The effect of PEFB mass loading to the carbon pores formation of PEFB membrane adsorbent was exhibited by the escalating of C-H and C-O groups. The membrane adsorbent by adding 17.5 grams of PEFB mass indicating the highest peak of hydroxyl C-O at wavenumber 1070 cm−1. It demonstrates that membrane adsorbent with high PEFB mass loading and physic activation by pyrolyzing is great to tailoring the membrane adsorbent structure properties which capable to be applied for gas separation, especially for biogas upgrading.

2021 ◽  
Vol 4 (2) ◽  
pp. 66-72
Author(s):  
Robby Candra Purnama ◽  
Annisa Primadiamanti

Kepok banana plants contain secondary metabolites such as tannins and flavonoids. Tannins and flavonoids have various properties for human health. Research has been carried out to identify secondary metabolite compounds (tannins, flavonoids, and saponins) by using the phytochemical screening method to see the functional group profile contained in the extract of kepok banana stem waste. Kepok banana stem waste was extracted in 96% ethanol, then evaporated and screened phytochemically. This extract was used to prepare effervescently. Screening results showed that tannin and flavonoids were identified by the appearance of the following color black-green and dark red, respectively. Meanwhile, saponins were negative because the foam formed had a height of 0.3 cm and did not meet the saponins' positive requirements (1-3 cm high foam and stable for 5 minutes). Identification of functional groups in the extract of kepok banana stem waste using Fourier-transform Infrared Spectroscopy (FTIR) showed that C-C stretching in the area 2927.24 cm-1, O-H stretching in the 3423.87 cm-1 area, C=O stretching in the 1648.87 cm-1 area. Also appeared bending CH2 in the region of 1421.45 cm-1, and C-C in the area of 1149.98 cm-1. The characteristics of three different formulas (A, B, and C) of effervescent have been investigated: the moisture content of 2.51%; 2.55%, and 2.52%, respectively. Then, flow rate of 8.81 g/s; 8.83 g/s; and 8.82 g/s, compressibility of 14.5%; 14.4%; and 14.5%, and a pH of 5.97; 5.98; and 5.97 respectively. All parameters are eligible.


2018 ◽  
Vol 283 ◽  
pp. 154-159
Author(s):  
Pusit Pookmanee ◽  
Pimpaka Sangthep ◽  
Jiratchaya Tafun ◽  
Viruntachar Kruefu ◽  
Suchanya Kojinok ◽  
...  

Copper oxide nanopowder was successfully synthesized by microwave method. Copper acetate and sodium hydroxide were used as the starting precursors. The microwave power was set to 800 Watt for 2-6 min and fine black nanopowder was obtained. The nanopowder was milled and dried at 80 °C for 12 h. The structure was identified by X-ray diffractometer (XRD). A monoclinic single phase of CuO nanopowder structure was obtained without calcination steps. The morphology was investigated by scanning electron microscope (FESEM). The particle was irregular in shape and agglomerated. The chemical composition was determined by energy dispersive X-ray spectrometer (EDXS). The chemical compositions showed the characteristic X-ray energy of copper (Kα=8.048 keV) and oxygen (Kα=0.525 keV), respectively. The functional group was investigated by fourier transform infrared spectrometer (FTIR). The functional groups of the vibration Cu-O bending showed the wavenumber at 491-615 cm-1.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 667
Author(s):  
So Young Kim ◽  
Younghyun Cho ◽  
Sang Wook Kang

poly ether-block-amide (PEBAX)-2533/metal salt/Al salt membranes were prepared for mixed olefin/paraffin separation. PEBAX-2533 with 80% ether group and 20% amide group was suggested as the polymer matrix for comparison of separation performance according to the functional group ratio in copolymer PEBAX. In addition, Al salts were used to stabilize metal ions for a long time as additives. High permeance was expected with the proportion of high ether groups, since these functional groups provided relatively permeable regions. As a result, the PEBAX-2533 composite membrane showed a selectivity of 5 (propylene/propane) with 10 GPU. However, the permeance of membrane was not unexpectedly improved and the selectivity was reduced. The result was analyzed by using SEM, RAMAN and thermogravimetric analysis (TGA), including Fourier transform infrared (FTIR). The reduction in separation performance was determined by using FT-IR. Based on these results, in order to stabilize the metal ions interacting with the polymer through Al(NO3)3, it was concluded that a specific ratio of the amide group was needed in PEBAX as a polymer matrix.


2019 ◽  
Vol 31 (12) ◽  
pp. 2725-2728
Author(s):  
S.D. Yuwono ◽  
D.A. Iryani ◽  
C. Gusti ◽  
Suharto ◽  
Buhani ◽  
...  

In Indonesia especially in Lampung Province, there are a lot of oil palm empty fruit bunches (OPEFB) as an organic material waste. OPEFB is relatively inexpensive lignocellulose material as raw material of cellulose acetate or acetyl cellulose. In a business to bigger added value out of these natural renewable materials, the production of the acetyl cellulose was performed well by the acetylation of cellulose from OPEFB using different methods. These were extensively characterized using thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The results indicated that the acetyl cellulose resulted showed similar properties to cotton acetyl cellulose. Degree of substitution of the resultant acetyl cellulose from different methods was improved from 1.86 to 2.60.


1980 ◽  
Vol 34 (1) ◽  
pp. 7-14 ◽  
Author(s):  
R. C. Wieboldt ◽  
B. A. Hohne ◽  
T. L. Isenhour

A method is presented for the direct analysis of interferometric data from gas chromatography Fourier transform infrared spectroscopy (GC/FTIR). A synthetic interferogram is initially produced which represents the characteristic absorption features of a particular functional group or compound class. A zero displacement correlation is performed between this test interferogram and each sample interferogram from the GC data. The presence of the desired functionality in the GC effluent is indicated by a small value of the resulting cumulative sum. A “correlogram” which emulates the response from a chemically specific GC detector is obtained by plotting the cumulative sum from each sample correlation. Synthetic interferograms representing infrared absorption bands which are truly specific for a particular functionality yield the best results.


2017 ◽  
Vol 5 (7) ◽  
pp. 3293-3303 ◽  
Author(s):  
Youssef Belmabkhout ◽  
Renjith S. Pillai ◽  
Dalal Alezi ◽  
Osama Shekhah ◽  
Prashant M. Bhatt ◽  
...  

Structure/properties relationships for a series of isostructural (MOFs) with thesoctopology were explored for various gas separation applications.


2010 ◽  
Vol 7 (3) ◽  
pp. 324-326
Author(s):  
I Made Sudarma ◽  
John Bremner

The objective of this research was to synthesize isoquino[2,1-c][1,3]benzodiazepine from papaverine alkaloid. Functional Group Interconversion (FGI) and Carbon -Nitrogen bond connection approach was investigated. Papaverine (1) was nitrated by HNO3 to compound (2) and followed by reduction with Sn and HCl to afford aminonorlaudanosine (3). Formation of cyclic benzodiazepine (4) was achieved by reaction of (3) with CS2. Products of reactions were confirmed by Nuclear Magnetic Resonances (n.m.r), Mass Spectrum, and Fourier Transform Infra Red (FTIR).   Keywords: isoquino[2,1-c][1,3]benzodiazepine, papaverine


2018 ◽  
Vol 3 (1) ◽  
pp. 1-6
Author(s):  
Mochamad Asrofi ◽  
Hairul Abral ◽  
Anwar Kasim ◽  
Adjar Pratoto ◽  
Melbi Mahardika

Abstrak Biokomposit dari pati tapioka dan serat akar buah naga telah berhasil dibuat. Sebanyak 0, 2, 4, dan 6% serat (dari berat kering pati) digunakan sebagai penguat biokomposit. Fabrikasi biokomposit menggunakan metode solution casting. Pengujian serapan uap air digunakan untuk mengetahui persentase penyerapan uap air. Gugus fungsi dari biokomposit ditentukan dengan karakterisasi FTIR (Fourier Transform Infra-Red). Persentase penyerapan uap air menunjukkan bahwa, film pati tapioka mempunyai serapan uap 21,7%. Hasil ini lebih tinggi dibandingkan dengan film tapioka ditambah serat. Fenomena ini didukung dengan analisis FTIR pada gugus serapan air sekitar wavenumber 1647 cm-1. Pada daerah tersebut terlihat bahwa, film pati tapioka memiliki absorban yang tinggi dibandingkan film pati tapioka ditambah serat. Kata-kata kunci: biokomposit, pati tapioka, serat akar buah naga, FTIR, serapan uap air. Abstract Tapioca starch biocomposites reinforced dragon fruit root fiber was successfully produced. As much 0, 2, 4 and 6% fiber fractions (from dry starch weight basis) were used as reinforcement in biocomposites. The fabrication of biocomposites was solution casting method. Moisture absorption testing was used to know the percentage of moisture absorption. The functional group of biocomposites was determined by FTIR (Fourier Transform Infra-Red) characterization. The moisture absorption percentage of tapioca starch film was 21,7%. This result was higher than fiber-reinforced biocomposites film. This phenomenon was supported by FTIR analysis on functional group (water absorption band) at wavenumber 1647 cm-1. In this wavenumber, tapioca starch film has higher absorbance than fiber-reinforced biocomposites film. Keywords: biocomposites, tapioca starch, dragon fruit root fiber, FTIR and moisture absorption.


Sign in / Sign up

Export Citation Format

Share Document