scholarly journals Correlation between Functional Group and Formation of Nanoparticles in PEBAX/Ag Salt/Al Salt Complexes for Olefin Separation

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 667
Author(s):  
So Young Kim ◽  
Younghyun Cho ◽  
Sang Wook Kang

poly ether-block-amide (PEBAX)-2533/metal salt/Al salt membranes were prepared for mixed olefin/paraffin separation. PEBAX-2533 with 80% ether group and 20% amide group was suggested as the polymer matrix for comparison of separation performance according to the functional group ratio in copolymer PEBAX. In addition, Al salts were used to stabilize metal ions for a long time as additives. High permeance was expected with the proportion of high ether groups, since these functional groups provided relatively permeable regions. As a result, the PEBAX-2533 composite membrane showed a selectivity of 5 (propylene/propane) with 10 GPU. However, the permeance of membrane was not unexpectedly improved and the selectivity was reduced. The result was analyzed by using SEM, RAMAN and thermogravimetric analysis (TGA), including Fourier transform infrared (FTIR). The reduction in separation performance was determined by using FT-IR. Based on these results, in order to stabilize the metal ions interacting with the polymer through Al(NO3)3, it was concluded that a specific ratio of the amide group was needed in PEBAX as a polymer matrix.

Author(s):  
So Young Kim ◽  
Younghyun Cho ◽  
Sang Wook Kang

PEBAX-2533/metal salt/Al salt membranes were prepared for mixed olefin/paraffin separation. PEBAX-2533 with 80% ether group and 20% amide group was suggested as the polymer matrix for comparison of separation performance according to the functional group ratio in copolymer PEBAX. In addition, Al salts were used to stabilize metal ions for a long time as additives. High permeance was expected with the proportion of high ether groups since these functional groups provided relatively permeable regions. As a result, the PEBAX-2533 composite membrane showed a selectivity of 5 (propylene/propane) with 10 GPU. However, the permeance of membrane was not unexpectedly improved and the selectivity was reduced. The result was analyzed by SEM, FT-RAMAN and TGA, including FT-IR. The reduction in separation performance was determined by FT-IR. From these results, in order to stabilize the metal ions interacting with the polymer through Al(NO3)3, it was concluded that specific ratio of amide group was needed in PEBAX as polymer matrix.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1363
Author(s):  
Hwa Jin Lee ◽  
Sang Wook Kang

Polymer composite membranes containing aniline were prepared for CO2/N2 separation. Aniline was selected for high separation performance as an additive containing both the benzene ring to interfere with gas transport and an amino group that could induce the accelerated transport of CO2 molecules. As a result, when aniline having both a benzene ring and an amino group was incorporated into polymer membranes, the selectivity was largely enhanced by the role of both gas barriers and CO2 carriers. Selective layers coated on the polysulfone were identified by scanning electron microscopy (SEM) images and the interaction with aniline in the polymer matrix was confirmed by FT-IR spectroscopy. The binding energy of oxygen in the polymer matrix was investigated by XPS, and the thermal stability of the composite membrane was confirmed by TGA.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
P. Sankarganesh ◽  
Baby Joseph

AbstractFourier transform infrared (FT-IR) spectroscopy is an indispensable tool for identifying biologically active functional groups in uncharacterized crude samples. Here, using FT-IR spectrum analysis, we identified crude extracts of Streptomyces that have anti-malarial activities and conducted a statistical analysis of their spectra. Among the three crude microbial extracts tested herein, an aromatic amine C-N stretching functional group was observed in the spectra of Streptomyces sp. BJSG1 and BJSG4 crude extracts. These extracts showed promising activity against Plasmodium falciparum in vitro cultures with IC


2011 ◽  
Vol 189-193 ◽  
pp. 1417-1420 ◽  
Author(s):  
Yung Chuan Chu ◽  
Fang Chang Tsai ◽  
Wei Ting Chen ◽  
Lung Chang Tsai ◽  
Chi Min Shu ◽  
...  

This study fully exploited the advantages of the similarities between chitosan and nitrocellulose (NC), their non-toxicity, superior germproof effects, and the characteristic of restraining fungal growth, to prevent NC’s biodegradation. In a comparison between NC’s Ea, the differences among them were dealt with or not with germproof chitosan by differential scanning calorimetry (DSC). We also observed specific functional groups with Fourier transform infrared (FT-IR) spectrometer to characterize the functional group transformation of NC under various thermal conditions.


Author(s):  
John A. Reffner ◽  
William T. Wihlborg

The IRμs™ is the first fully integrated system for Fourier transform infrared (FT-IR) microscopy. FT-IR microscopy combines light microscopy for morphological examination with infrared spectroscopy for chemical identification of microscopic samples or domains. Because the IRμs system is a new tool for molecular microanalysis, its optical, mechanical and system design are described to illustrate the state of development of molecular microanalysis. Applications of infrared microspectroscopy are reviewed by Messerschmidt and Harthcock.Infrared spectral analysis of microscopic samples is not a new idea, it dates back to 1949, with the first commercial instrument being offered by Perkin-Elmer Co. Inc. in 1953. These early efforts showed promise but failed the test of practically. It was not until the advances in computer science were applied did infrared microspectroscopy emerge as a useful technique. Microscopes designed as accessories for Fourier transform infrared spectrometers have been commercially available since 1983. These accessory microscopes provide the best means for analytical spectroscopists to analyze microscopic samples, while not interfering with the FT-IR spectrometer’s normal functions.


Fuel ◽  
2021 ◽  
Vol 296 ◽  
pp. 120669
Author(s):  
Wenlong Mo ◽  
Zifan Wu ◽  
Xiaoqiang He ◽  
Wenjie Qiang ◽  
Bo Wei ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1117
Author(s):  
Bin Li ◽  
Zhikang Jiang ◽  
Jie Chen

Computing the sparse fast Fourier transform (sFFT) has emerged as a critical topic for a long time because of its high efficiency and wide practicability. More than twenty different sFFT algorithms compute discrete Fourier transform (DFT) by their unique methods so far. In order to use them properly, the urgent topic of great concern is how to analyze and evaluate the performance of these algorithms in theory and practice. This paper mainly discusses the technology and performance of sFFT algorithms using the aliasing filter. In the first part, the paper introduces the three frameworks: the one-shot framework based on the compressed sensing (CS) solver, the peeling framework based on the bipartite graph and the iterative framework based on the binary tree search. Then, we obtain the conclusion of the performance of six corresponding algorithms: the sFFT-DT1.0, sFFT-DT2.0, sFFT-DT3.0, FFAST, R-FFAST, and DSFFT algorithms in theory. In the second part, we make two categories of experiments for computing the signals of different SNRs, different lengths, and different sparsities by a standard testing platform and record the run time, the percentage of the signal sampled, and the L0, L1, and L2 errors both in the exactly sparse case and the general sparse case. The results of these performance analyses are our guide to optimize these algorithms and use them selectively.


2021 ◽  
Vol 13 (4) ◽  
pp. 701 ◽  
Author(s):  
Binbin Wang ◽  
Hao Cha ◽  
Zibo Zhou ◽  
Bin Tian

Clutter cancellation and long time integration are two vital steps for global navigation satellite system (GNSS)-based bistatic radar target detection. The former eliminates the influence of direct and multipath signals on the target detection performance, and the latter improves the radar detection range. In this paper, the extensive cancellation algorithm (ECA), which projects the surveillance channel signal in the subspace orthogonal to the clutter subspace, is first applied in GNSS-based bistatic radar. As a result, the clutter has been removed from the surveillance channel effectively. For long time integration, a modified version of the Fourier transform (FT), called long-time integration Fourier transform (LIFT), is proposed to obtain a high coherent processing gain. Relative acceleration (RA) is defined to describe the Doppler variation results from the motion of the target and long integration time. With the estimated RA, the Doppler frequency shift compensation is carried out in the LIFT. This method achieves a better and robust detection performance when comparing with the traditional coherent integration method. The simulation results demonstrate the effectiveness and advantages of the proposed processing method.


Molbank ◽  
10.3390/m1238 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1238
Author(s):  
Ion Burcă ◽  
Valentin Badea ◽  
Calin Deleanu ◽  
Vasile-Nicolae Bercean

A new azo compound was prepared via the azo coupling reaction between 4-(ethoxycarbonyl)-3-methyl-1H-pyrazole-5-diazonium chloride and 8-hydroxyquinoline (oxine). The ester functional group of the obtained compound was hydrolyzed and thus a new chemical structure with a carboxylic functional group resulted. The structures of the new compounds were fully characterized by: UV–Vis, FT-IR, 1D and 2D NMR spectroscopy, and HRMS spectrometry.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 429
Author(s):  
Aurelia Cristina Nechifor ◽  
Andreia Pîrțac ◽  
Paul Constantin Albu ◽  
Alexandra Raluca Grosu ◽  
Florina Dumitru ◽  
...  

The separation, concentration and transport of the amino acids through membranes have been continuously developed due to the multitude of interest amino acids of interest and the sources from which they must be recovered. At the same time, the types of membranes used in the sepa-ration of the amino acids are the most diverse: liquids, ion exchangers, inorganic, polymeric or composites. This paper addresses the recuperative separation of three amino acids (alanine, phe-nylalanine, and methionine) using membranes from cellulosic derivatives in polypropylene ma-trix. The microfiltration membranes (polypropylene hollow fibers) were impregnated with solu-tions of some cellulosic derivatives: cellulose acetate, 2-hydroxyethyl-cellulose, methyl 2-hydroxyethyl-celluloseand sodium carboxymethyl-cellulose. The obtained membranes were characterized in terms of the separation performance of the amino acids considered (retention, flux, and selectivity) and from a morphological and structural point of view: scanning electron microscopy (SEM), high resolution SEM (HR-SEM), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and thermal gravimetric analyzer (TGA). The re-sults obtained show that phenylalanine has the highest fluxes through all four types of mem-branes, followed by methionine and alanine. Of the four kinds of membrane, the most suitable for recuperative separation of the considered amino acids are those based on cellulose acetate and methyl 2-hydroxyethyl-cellulose.


Sign in / Sign up

Export Citation Format

Share Document