scholarly journals Development of the Technology of Large Bodies Manufacturing Based on Combined Process of Plate Rolling and Stamping

Author(s):  
Alexander Pesin ◽  
Ernst Drigun ◽  
Denis Pustovoitov ◽  
Ilya Pesin
2016 ◽  
Vol 80 ◽  
pp. 15008 ◽  
Author(s):  
Alexander Pesin ◽  
Ernst Drigunt ◽  
Denis Pustovoytov ◽  
Ilya Pesin

2021 ◽  
Vol 81 ◽  
pp. 219-228
Author(s):  
Zhong-Zheng Jin ◽  
Min Zha ◽  
Hai-Long Jia ◽  
Pin-Kui Ma ◽  
Si-Qing Wang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2018 ◽  
Vol 941 ◽  
pp. 633-638
Author(s):  
John Joseph Jonas ◽  
Clodualdo Aranas Jr. ◽  
Samuel F. Rodrigues

Under loading above the Ae3 temperature, austenite transforms displacively into Widmanstätten ferrite. Here the driving force for transformation is the net softening during the phase change while the obstacle consists of the free energy difference between austenite and ferrite as well as the work of shear accommodation and dilatation during the transformation. Once the driving force is higher than the obstacle, phase transformation occurs. This phenomenon was explored here by means of the optical and electron microscopy of a C-Mn steel deformed above their transformation temperatures. Strain-temperature-transformation (STT) curves are presented that accurately quantify the amount of dynamically formed ferrite; the kinetics of retransformation are also specified in the form of appropriate TTRT diagrams. This technique can be used to improve the models for transformation on accelerated cooling in strip and plate rolling.


1968 ◽  
Vol 51 (9) ◽  
pp. 1500-1502 ◽  
Author(s):  
W.H. Stroup ◽  
A.L. Reyes ◽  
G.K. Murthy ◽  
R.B. Read ◽  
R.W. Dickerson

2016 ◽  
Vol 74 (3) ◽  
pp. 655-662 ◽  
Author(s):  
Mei Pan ◽  
Jun Zhao ◽  
Shucong Zhen ◽  
Sheng Heng ◽  
Jie Wu

Excess nitrogen in urban river networks leading to eutrophication has become one of the most urgent environmental problems. Combinations of different aeration and biofilm techniques was designed to remove nitrogen from rivers. In laboratory water tank simulation experiments, we assessed the removal efficiency of nitrogen in both the overlying water and sediments by using the combination of the aeration and biofilm techniques, and then analyzed the transformation of nitrogen during the experiments. Aeration (especially sediment aeration) combined with the biofilms techniques was proved efficient in removing nitrogen from polluted rivers. Results indicated that the combination of sediment aeration and biofilms, with the highest nitrogen removal rate from the overlying water and sediments, was the most effective combined process, which especially inhibited the potential release of nitrogen from sediments by reducing the enzyme activity. It was found that the content of dissolved oxygen in water could be restored on the basis of the application of aeration techniques ahead, and the biofilm technique would be effective in purifying water in black-odor rivers.


Sign in / Sign up

Export Citation Format

Share Document