scholarly journals Thermal resistance and water vapor permeability of compound woven fabrics containing silver multifilament

Author(s):  
M J Toghchi ◽  
C Loghin ◽  
C Campagne ◽  
I Cristian ◽  
P Bruniaux ◽  
...  
2017 ◽  
Vol 12 (4) ◽  
pp. 155892501701200 ◽  
Author(s):  
Rong Zhou ◽  
Xueli Wang ◽  
Jianyong Yu ◽  
Zhenzhen Wei ◽  
Yu Gao

This paper reports a hollow copolyester fiber modified with polyethylene glycol and sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate, abbreviated as ECDP-H, which has the potential to be a replacement for cotton. The objective evaluation of luster (contrast glossiness) and Kawabata Evaluation System for Fabrics (KES-F) (four Primary Hand Parameters and the Total Hand) of ECDP-H, PET and cotton fabrics are studied in order to investigate the cotton-like appearance of the ECDP-H. The results of moisture regain and dynamic moisture absorption values obtained indicate that the hydrophilicity of the ECDP-H fabric is better than that of PET fabric. The thermo-physiological performance for three fabrics is determined using air and water vapor permeability, wicking, warm-cooling feeling, thermal resistance and vapor resistance. The results show that the ECDP-H fabric has better hand and comfort properties than cotton.


2013 ◽  
Vol 67 (6) ◽  
pp. 941-950 ◽  
Author(s):  
Dusan Rajic ◽  
Zeljko Kamberovic ◽  
Radovan Karkalic ◽  
Negovan Ivankovic ◽  
Zeljko Senic

Fires are an accompanying manifestation in modern weaponry use and in case of different accidents in peacetime. The standard military uniform is a primary barrier in protection of a soldier?s body from all external influences, including the thermal ones which can cause burns. The minimum thermal resistance to the effect of burning napalm mixture (BNM) in individual uniform garment materials has been determined, and is higher at simultaneous use of more materials one over another (the so-called sandwich materials), where the best thermal protection give sandwich materials with an air interspace. The requirement for the thermal resistance of the material of the filtrating protective suit (FPS) to the effect of BNM (? 15 s) has been fully met. The highest thermal resistance has been demonstrated by the FPS whose inner layer is made of polyurethane foam with active carbon. A proportional dependence between the thermal resistance of FPS to the effect of BNM and water vapor permeability through this garment mean has been determined, and reversed in respect to air permeability.


2020 ◽  
Vol 90 (17-18) ◽  
pp. 1987-2006 ◽  
Author(s):  
Tariq Mansoor ◽  
Lubos Hes ◽  
Vladimir Bajzik ◽  
Muhammad Tayyab Noman

The present study proposes a novel method to measure the thermal resistance and comfort properties of various sock samples under wet conditions. Theoretically, comfort properties are responsible for transporting moisture by our body with different rates. Therefore, plain socks with different fiber composition were wetted to a saturated level and after getting the required moisture content, the sock samples were characterized by Alambeta (for thermal resistance and thermal absorptivity) and Permetest instruments for relative water vapor permeability in the wet state. In addition, various skin models were utilized to make a comparison of thermal resistance in the dry state. Two different models were modified for analyzing the thermal resistance under wet conditions. According to the models used, the prediction of thermal resistance is a combined effect of the filling coefficient and thermal conductivity of wet polymers instead of dry polymers. With these modifications, the used models predicted the thermal resistance at different moisture levels with a significant correlation ( R2) value, that is, 0.84–0.97.


2019 ◽  
Vol 31 (2) ◽  
pp. 272-283 ◽  
Author(s):  
Sibel Kaplan ◽  
Ceren Karaman

Purpose The purpose of this paper is to investigate thermal comfort performances of socks produced from cotton and regenerated cellulosic fiber yarns by thermal resistance (by a newly designed foot thermal manikin), moisture management tester (MMT) parameters and permeability (air and water vapor) tests. Design/methodology/approach Single jersey fabrics and socks were knitted from 30 Ne yarns produced from cotton, different regenerated cellulosic fibers (viscose, modal, bamboo, micromodal, Tencel®, Tencel LF®) and their blends. Thermal resistances of the socks were compared by a newly developed thermal foot manikin in a more realistic way than measurements in fabric form. Besides air and water vapor permeability, moisture management parameters of the fabrics were tested to differentiate performances of cellulosic fibers. Findings Results show that air permeability, liquid absorption and transfer parameters measured by MMT are generally identical and better for regenerated cellulosic fabrics than cotton. Micromodal and Tencel® have better performances for liquid transfer and overall moisture management capacities are superior for bamboo and Tencel LF®. Thermal resistances of the socks are minimum for Tencel LF® having a cross-linked structure and maximum for viscose socks. Originality/value It is thought that thermal resistance measured in socks form is more realistic than fabric measurements and results of this study that can be valid for all knitted garments. Moreover, comprehensive material plan of the study is valuable for getting reliable results for regenerated cellulosic fibers that have small differences in cases of thermal resistance and liquid transfer.


2020 ◽  
Vol 32 (6) ◽  
pp. 837-847 ◽  
Author(s):  
Sadaf Aftab Abbasi ◽  
Arzu Marmaralı ◽  
Gözde Ertekin

PurposeThis paper investigates the thermal comfort properties of quilted (jersey cord) fabrics produced with different width of diamond pattern, different filling yarn linear density and different types of material.Design/methodology/approachA total of 12 fabrics were knitted by varying the width of diamond pattern (1 and 3 cm), the filling yarn linear density (300 and 900 denier) and the type of materials (cotton, polyester and their combination). In this regard, air permeability, thermal conductivity, thermal resistance, thermal absorptivity and relative water vapor permeability of these fabrics were measured and evaluated statistically.FindingsThe results showed that fabrics knitted using cotton yarn in both front and back surfaces exhibit higher thermal conductivity, thermal absorptivity and relative water vapor permeability characteristics; whereas samples knitted using polyester yarn in both surfaces have higher air permeability and thermal resistance. As the linear density of filling yarn increases, thickness and thermal resistance of the samples increase and air permeability, thermal conductivity, water vapor permeability characteristics decrease. When the effect of the width of diamond pattern compared, it is seen that an increase in the width of pattern lead to an increase in thickness and thermal resistance and a decrease in thermal conductivity, thermal absorptivity and water vapor permeability values.Originality/valueMany researches were carried out on the thermal comfort properties of knitted fabrics, however there is a lack of research efforts regarding thermal comfort properties of quilted fabrics.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6863
Author(s):  
Desalegn Atalie ◽  
Pavla Tesinova ◽  
Melkie Getnet Tadesse ◽  
Eyasu Ferede ◽  
Ionuț Dulgheriu ◽  
...  

Consumers expect high-performance functionality from sportswear. To meet athletic and leisure-time activity requirements, further research needs to be carried out. Sportswear layers and their specific thermal qualities, as well as the set and air layer between materials, are all important factors in sports clothing. This research aims to examine the thermal properties of sports fabrics, and how they are affected by structure parameters and maintained with different layers. Three inner and four outer layers of fabric were used to make 12 sets of sportswear in this study. Before the combination of outer and inner layers, thermal properties were measured for each individual layer. Finally, the thermal resistance, thermal conductivity, thermal absorptivity, peak heat flow density ratio, stationary heat flow density, and water vapor permeability of bi-layered sportswear were evaluated and analyzed. The findings show that sportswear made from a 60% cotton/30% polyester/10% elastane inner layer and a 100% polyester outer layer had the maximum thermal resistance of 61.16 (×103 K·m2 W−1). This performance was followed by the sample made from a 90% polyester/10% elastane inner layer and a 100% polyester outer layer, and the sample composed of a 100% elastane inner layer and a 100% polyester outer layer, which achieved a thermal resistance value of 60.41 and 59.41 (×103 K·m2 W−1), respectively. These results can be explained by the fact that thicker textiles have a higher thermal resistance. This high-thermal-resistance sportswear fabric is appropriate for the winter season. Sportswear with a 90% polyester/10% elastane inner layer had worse water vapor resistance than sportswear with a 60% cotton/30% polyester/10% elastane and a 100% elastane layer. Therefore, these sports clothes have a higher breathability and can provide the wearers with very good comfort. According to the findings, water vapor permeability of bi-layered sportswear is influenced by geometric characteristics and material properties.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinshu Liu ◽  
Xiaoyan Ma ◽  
Wenzhao Shi ◽  
Jianwei Xing ◽  
Chaoqun Ma ◽  
...  

Abstract Baicalin, an active flavonoid ingredient of Scutellaria baicalensis Georgi, was extracted by heat reflux extraction and showed the same significance UV absorption property with standard baicalin. Active films were prepared from polyvinyl alcohol (PVA) containing baicalin extract by casting method. The effect of baicalin extracts on the UV-blocking, optical, antioxidant property, water vapor permeability, swelling and mechanical properties of the films were studied. UV–vis transmittance spectra showed that PVA films incorporated with baicalin extract blocked ultraviolet light range from 280–400 nm even with low concentration of baicalin (0.5 wt%) and maintain the high transparency in visible spectrum. The outstanding UV-blocking properties of PVA films incorporated with baicalin extract were also confirmed by Rhodamine B degradation. Baicalin conferred antioxidant properties to PVA films as determined by DPPH radical scavenging activity. Due to the interaction between hydroxy groups of baicalin and PVA molecule, water vapor permeability, swelling and elongation at break of the films were decreased accompanied with the increasing in tensile strength and Young’s modulus. FTIR reveal that the interaction between PVA molecules was significant changed by the introduction of baicalin. These results suggest that PVA film incorporated with baicalin extract can be used for the development of functional protective film.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 602
Author(s):  
Carmen Rodica Pop ◽  
Teodora Emilia Coldea ◽  
Liana Claudia Salanţă ◽  
Alina Lăcrămioara Nistor ◽  
Andrei Borşa ◽  
...  

Kefiran is an exopolysaccharide classified as a heteropolysaccharide comprising glucose and galactose in equimolar quantities, and it is classified as a water-soluble glucogalactan. This work aimed to investigate the effect of different extraction conditions of kefiran on the structural and physical properties of the edible films obtained. Fourier-transform infrared spectroscopy and scanning electron microscopy were performed, together with a determinations of moisture content, solubility, water vapor permeability and degree of swelling. The kefiran films presented values of the water vapor permeability between 0.93 and 4.38 × 10−11 g/m.s.Pa. These results can be attributed to the development of a more compact structure, where glycerol had no power to increase the free volume and the water vapor diffusion through their structure. The possible conformational changes in the kefiran film structure, due to the interspersing of the plasticizers and water molecules that they absorb, could be the reason for producing flexible kefiran films in the case of using glycerol as a plasticizer at 7.5% w/w. Moreover, it was observed that the extraction conditions are a significant factor in the properties of these films and their food technology applications.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3090
Author(s):  
Anita Ptiček Siročić ◽  
Ana Rešček ◽  
Zvonimir Katančić ◽  
Zlata Hrnjak-Murgić

The studied samples were prepared from polyethylene (PE) polymer which was coated with modified polycaprolactone (PCL) film in order to obtain bilayer films. Thin PCL film was modified with casein/aluminum oxide compound to enhance vapor permeability as well as mechanical and thermal properties of PE/PCL films. Casein/aluminum oxide modifiers were used in order to achieve some functional properties of polymer film that can be used in various applications, e.g., reduction of water vapor permeability (WVTR) and good mechanical and thermal properties. Significant improvement was observed in mechanical properties, especially in tensile strength as well as in water vapor values. Samples prepared with aluminum oxide particles indicated significantly lower values up to 60%, and samples that were prepared with casein and 5% Al2O3 showed the lowest WVTR value.


Sign in / Sign up

Export Citation Format

Share Document