scholarly journals The Effect of Overlap Ratio and Silicon Carbide Wheel Grinder on Vibration Amplitude and Surface Roughness for Material OCR12VM.

Author(s):  
F C Putra ◽  
Suhardjono ◽  
Sampurno
2012 ◽  
Vol 37 (5) ◽  
pp. 532-539 ◽  
Author(s):  
JW Park ◽  
CW Song ◽  
JH Jung ◽  
SJ Ahn ◽  
JL Ferracane

SUMMARY The purpose of this study was to investigate the effects of surface roughness of resin composite on biofilm formation of Streptococcus mutans in the presence of saliva. To provide uniform surface roughness on composites, disks were prepared by curing composite against 400-grit silicon carbide paper (SR400), 800-grit silicon carbide paper (SR800), or a glass slide (SRGlass). The surface roughness was examined using confocal laser microscopy. For biofilm formation, S. mutans was grown for 24 hours with each disk in a biofilm medium with either glucose or sucrose in the presence of fluid-phase or surface-adsorbed saliva. The adherent bacteria were quantified via enumeration of the total viable counts of bacteria. Biofilms were examined using scanning electron microscopy. This study showed that SR400 had deeper and larger, but fewer depressions than SR800. Compared to SRGlass and SR800, biofilm formation was significantly increased on SR400. In addition, the differences in the effect of surface roughness on the amount of biofilm formation were not significantly influenced by either the presence of saliva or the carbohydrate source. Considering that similar differences in surface roughness were observed between SR400 and SR800 and between SR800 and SRGlass, this study suggests that surface topography (size and depth of depressions) may play a more important role than surface roughness in biofilm formation of S. mutans.


2014 ◽  
Vol 5 (4) ◽  
pp. 9-17
Author(s):  
Józef Gawlik ◽  
Magdalena Niemczewska-Wójcik ◽  
Joanna Krajewska ◽  
Serghej V. Sokhan ◽  
E.A. Paščenko ◽  
...  

Abstract This paper presents the results of the tests performed during the grinding process of the ceramic materials: – polycrystalline ceramics (Zirconium ZrO2) and mono-crystalline ceramics (sapphire α-Al2O3) by the diamond tools. Studies have shown that the concentration (thickening) of the tool composite changes the tool's pore structure when using suitable wetted adamantine additives. Such modified composite has positive impact on tribological properties of the subsurface layer of the machined components. This is manifested by the reduction of the surface roughness and reduction of the vibration amplitude of the coefficient of friction. The possibilities of the positive effects when using wetted additives on the tool's composite during the pressing (briquetting) stage confirm the study results.


2010 ◽  
Vol 34 (2) ◽  
pp. 295-308 ◽  
Author(s):  
Akram Saad ◽  
Robert Bauer ◽  
Andrew Warkentin

This paper investigates the effect of both single-point and diamond-roll dressing techniques on the workpiece surface roughness in grinding. Two empirical surface roughness models are studied – one that incorporates single-point dressing parameters, and another that incorporates diamond-roll dressing parameters. For the experimental conditions used in this research, the corresponding empirical model coefficients are found to have a linear relationship with the inverse of the overlap ratio for single-point dressing and the interference angle for diamond-roll dressing. The resulting workpiece surface roughness models are then experimentally validated for different depths of cut, workpiece speeds and dressing conditions. In addition, the models are used to derive a relationship between overlap ratio for single-point dressing, and interference angle for diamond-roll dressing such that both dressing techniques produce a similar surface finish for a given material removal rate.


2019 ◽  
Vol 825 ◽  
pp. 92-98
Author(s):  
Nakatsuka Nagatoshi ◽  
Sumito Toyokawa ◽  
Atsushi Kusakabe ◽  
Shinya Nakatsukasa ◽  
Hiroyuki Sasahara

The objective of this paper is to clarify the effect of grinding surface characteristics in the grinding of a titanium alloy with a coolant supply from the inner side of the grinding wheel. In this paper, we selected a white aluminum oxide (WA) vitrified bonded grinding wheel and a green silicon carbide (GC) vitrified bonded grinding wheel, and compared their grinding characteristics. As a result, in the case of the GC vitrified bonded grinding wheel, the surface roughness decreased by about 54% and the compressive residual stress increased by about 128%.


2014 ◽  
Vol 778-780 ◽  
pp. 767-770 ◽  
Author(s):  
Norimasa Yamamoto ◽  
Satarou Yamaguchi ◽  
Tomohisa Kato

Recently, ingots of silicon carbide have been adapted to be sliced by the wire-cut electrical discharge machining. Fast slicing, and the reduction in the loss are important for slicing of the wafer. In this paper, characteristic features of the electric discharge machining in the ion-exchange water and the fluorine-based fluid were compared for these improvement. The discharge was caused by a pulse voltage applied to a ingot of silicon carbide and the wire in machining fluid, and the slicing was proceeded. As a result, improvement of surface roughness and kerf loss was confirmed, for the first time. In addition, the improving methods for fast slicing were considered.


1998 ◽  
Vol 29 (11) ◽  
pp. 1417-1423 ◽  
Author(s):  
Eddy Vanswijgenhoven ◽  
Konstantza Lambrinou ◽  
Martine Wevers ◽  
Omer Van Der Biest

Sign in / Sign up

Export Citation Format

Share Document