scholarly journals Numerical simulation and experimental analysis of labyrinth valve flow characteristics based on CFX

Author(s):  
Tao Wang ◽  
Maosheng Wang ◽  
Youliang Su ◽  
Song Mu ◽  
Kai Jing ◽  
...  
2008 ◽  
Vol 25 (5) ◽  
pp. 1541-1544 ◽  
Author(s):  
Yuan Jin-Hui ◽  
Hou Lan-Tian ◽  
Zhou Gui-Yao ◽  
Wei Dong-Bin ◽  
Chen Chao ◽  
...  

2021 ◽  
Author(s):  
Weigang Huang ◽  
Donglei Zhang ◽  
Jiawei Yu ◽  
Tao He ◽  
Xianzhou Wang

Abstract AUV (Autonomous Underwater Vehicle) recovery is considerably influenced by the nearby flow field and simulations of AUV in different motion paths in the wake of a submarine with a propeller are presented in this paper. A commercial CFD solver STAR CCM+ has been used to research the motion and flow characteristics of AUV, which using the advanced computational continuum mechanics algorithms. The DARPA (Defense Advanced Research Projects Agency) SUBOFF Submarine (L1 = 4.356m) propelled with INSEAN (Italian Ship Model Basin) E1619 propeller is used in this study, and the self-propulsion characteristics of the propeller at an incoming flow velocity of 2.75m/s are obtained through numerical simulation and results are compared with the available experimental data to prove the accuracy of the chosen investigation methodology. A grid/time-step convergence test is performed for verification study. AUV (L2 = 0.4356m) is a smaller-scale SUBOFF without a sail, which approaches the submarine in different motion paths in the submarine wake at a relative speed combined with the dynamic overlapping grid technology. The hydrodynamic performance of the AUV when approaching the submarine and the velocity distribution of the surrounding flow field are analyzed, which provides a useful reference for underwater recovery of the AUV.


Author(s):  
Shashank R Chaurasia ◽  
RM Sarviya

An experimental analysis has been carried out to investigate the thermal and friction factor characteristics of fluid flow in a tube with double strip helical screw tape (DS-HST) inserts with different values of twist ratio and compared with single strip helical screw tape inserts and plain tube. Water is used as a working fluid at different flow rates with constant heat flux conditions. CFD analysis is also carried out to visualize thermal and fluid flow characteristics of fluid flow in tube with inserts. Experimental results have showed that Nusselt number and friction factor have attained excellent enhancement with double strip helical screw tape inserts in the range of flow rates than single strip helical screw tape inserts at the value of twist ratio 1.5. Correlation is also developed for Nusselt number with a range of Reynolds number, twist ratio and number of strips. Moreover, the performance ratio has attained maximum value at twist ratio of 2.5 with high values of flow rate. It is concluded that DS-HST is able to attain enhancement in the efficiency of heat exchanger, causing a reduction in size for thermal applications.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 949 ◽  
Author(s):  
Yan Jin ◽  
Xiaoke He ◽  
Ye Zhang ◽  
Shanshan Zhou ◽  
Hongcheng Chen ◽  
...  

This paper presents an investigation of external flow characteristics and pressure fluctuation of a submersible tubular pumping system by using a combination of numerical simulation and experimental methods. The steady numerical simulation is used to predicted the hydraulic performance of the pumping system, and the unsteady calculation is adopted to simulate the pressure fluctuation in different components of a submersible tubular pumping system. A test bench for a model test and pressure pulsation measurement is built to validate the numerical simulation. The results show that the performance curves of the calculation and experiment are in agreement with each other, especially in the high efficiency area, and the deviation is minor under small discharge and large discharge conditions. The pressure pulsation distributions of different flow components, such as the impeller outlet, middle of the guide vane, and guide vane outlet and bulb unit, are basically the same as the measurement data. For the monitoring points on the impeller and the wall of the guide vane especially, the main frequency and its amplitude matching degree are higher, while the pressure pulsation values on the wall of the bulb unit are quite different. The blade passing frequency and its multiples are important parameters for analysis of pressure pulsation; the strongest pressure fluctuation intensity appears in the impeller outlet, which is mainly caused by the rotor–stator interaction. The farther the measuring point from the impeller, the less the pressure pulsation is affected by the blade frequency. The frequency amplitudes decrease from the impeller exit to the bulb unit.


2011 ◽  
Vol 308-310 ◽  
pp. 189-192
Author(s):  
Long Xing Chen ◽  
Wen Qi Ma ◽  
He Chun Yu ◽  
Hai Yan Liu ◽  
Hong Wang Du

The aerostatic circular thrust bearing was taken as a study subject. The numerical simulation method was used to calculate the flow passage. Meanwhile, the single-point testing method was used to test the pressure distribution. The simulation and experiment measurement results were compared and analyzed. The results show that: The single-point testing method is effective to capture the change of flow characteristics. The overall results of simulation and testing coincide with each other well. In the range of cone cavity, the flow pattern for the gas is turbulent flow, and the flow field should be divided into different zones for simulation.


2020 ◽  
Vol 85 ◽  
pp. 108624
Author(s):  
F. Felis ◽  
S. Tomas ◽  
A. Vallet ◽  
M. Amielh ◽  
F. Anselmet

Sign in / Sign up

Export Citation Format

Share Document