scholarly journals Cancer cell migration on straight, wavy, loop and grid microfibre patterns

2022 ◽  
Author(s):  
Duo Zhang ◽  
Yaqi Sheng ◽  
Nicholas Piano ◽  
Theresa Jakuszeit ◽  
Edward Cozens ◽  
...  

Abstract Cell migration plays an important role in physiological and pathological processes where the fibrillar morphology of extracellular matrices (ECM) could regulate the migration dynamics. To mimic the morphological characteristics of fibrillar matrix structures, low-voltage continuous electrospinning was adapted to construct straight, wavy, looped and gridded fibre patterns made of polystyrene (of fibre diameter ca. 3 μm). Cells were free to explore their different shapes in response to the directly-adhered fibre, as well as to the neighbouring patterns. For all the patterns studied, analysing cellular migration dynamics of MDA-MB-231 (a highly migratory breast cancer cell line) demonstrated two interesting findings: first, although cells dynamically adjust their shapes and migration trajectories in response to different fibrillar environments, their average step speed is minimally affected by the fibre global pattern; secondly, a switch in behaviour was observed when the pattern features approach the upper limit of the cell body’s minor axis, reflecting that cells’ ability to divert from an existing fibre track is limited by the size along the cell body’s minor axis. It is therefore concluded that the upper limit of cell body’s minor axis might act as a guide for the design of microfibre patterns for different purposes of cell migration.

2021 ◽  
Author(s):  
Duo Zhang ◽  
Yaqi Sheng ◽  
Nicholas Piano ◽  
Theresa Jakuszeit ◽  
Edward Cozens ◽  
...  

Cell migration plays an important role in physiological and pathological processes where the fibrillar morphology of extracellular matrice (ECM) could regulate the migration dynamics. To mimic the morphological characteristics of fibrillar matrix structures, low-voltage continuous electrospinning was adapted to construct straight, wavy, looped and gridded fibre patterns made of polystyrene (of fibre diameter ca. 3 μm). With microfibres deposited onto non-passivated surfaces, cells were permitted to explore their different shapes in response to the directly-adhered fibre, as well as to the neighbouring patterns. For all the patterns studied, analysing cellular migration dynamics of MDA-MB-231 (a highly migratory breast cancer cell line) demonstrated a switch in behaviour when the pattern features approach the upper limit of the cell minor axis. Our findings suggest that, although cells dynamically adjust their shapes in response to different fibrillar environments during migration, their ability to divert from an existing fibre track is limited by the size along the cell minor axis. We therefore conclude that the upper limit of cell minor axis might act as a guide for the design of microfibre patterns for different purposes of cell migration.


Author(s):  
Russell J. Ledet ◽  
Sophie Ruff ◽  
Yu Wang ◽  
Shruti Nayak ◽  
Jeffrey A. Schneider ◽  
...  

ABSTRACTPIM1 is an oncogenic serine/threonine kinase that promotes and maintains prostate tumorigenesis. To more fully understand the mechanism by which PIM1 promotes oncogenesis, we performed a chemical genetic screen to identify direct PIM1 substrates in prostate cancer cells. The PIM1 substrates we identified were involved in a variety of oncogenic processes, and included N-Myc Downstream-Regulated Gene 1 (NDRG1), which has reported roles in the suppression of cancer cell invasion and metastasis. NDRG1 is phosphorylated by PIM1 at serine 330 (pS330), and the level of NDRG1 pS330 is associated with high grade compared to low grade prostate tumors. While NDRG1 pS330 is largely cytoplasmic, total NDRG1 is both cytoplasmic and nuclear. Mechanistically, PIM1 phosphorylation of NDRG1 decreases its stability, reducing its interaction with AR, and thereby lowering expression of AR target genes. PIM1-dependent NDRG1 phosphorylation also reduces NDRG1’s ability to suppress prostate cancer cell migration and invasion. Our study identifies a novel set of PIM1 substrates in prostate cancer cells using a direct, unbiased chemical genetic screen. It also provides key insights into the mechanisms by which PIM1-mediated phosphorylation of NDRG1 impairs its function, resulting in enhanced cell migration and invasion.


2021 ◽  
Vol 22 (19) ◽  
pp. 10620
Author(s):  
Ana Virginia Sánchez-Sánchez ◽  
Antonio García-España ◽  
Pilar Sánchez-Gómez ◽  
Jaime Font-de-Mora ◽  
Marián Merino ◽  
...  

NANOG is a key transcription factor required for maintaining pluripotency of embryonic stem cells. Elevated NANOG expression levels have been reported in many types of human cancers, including lung, oral, prostate, stomach, breast, and brain. Several studies reported the correlation between NANOG expression and tumor metastasis, revealing itself as a powerful biomarker of poor prognosis. However, how NANOG regulates tumor progression is still not known. We previously showed in medaka fish that Nanog regulates primordial germ cell migration through Cxcr4b, a chemokine receptor known for its ability to promote migration and metastasis in human cancers. Therefore, we investigated the role of human NANOG in CXCR4-mediated cancer cell migration. Of note, we found that NANOG regulatory elements in the CXCR4 promoter are functionally conserved in medaka fish and humans, suggesting an evolutionary conserved regulatory axis. Moreover, CXCR4 expression requires NANOG in human glioblastoma cells. In addition, transwell assays demonstrated that NANOG regulates cancer cell migration through the SDF1/CXCR4 pathway. Altogether, our results uncover NANOG-CXCR4 as a novel pathway controlling cellular migration and support Nanog as a potential therapeutic target in the treatment of Nanog-dependent tumor progression.


Author(s):  
Soyoung Hwang ◽  
Peter Chang-Whan Lee ◽  
Dong Min Shin ◽  
Jeong Hee Hong

Spinophilin (SPL) is a multifunctional actin-binding scaffolding protein. Although increased research on SPL in cancer biology has revealed a tumor suppressive role, its modulation in cancer biology, and oncological relevance remains elusive. Thus, we determined the role of SPL in the modulation of the junctional network and cellular migration in A549 lung cancer cell line. Knockdown of SPL promoted cancer cell invasion in agarose spot and scratch wound assays. Attenuation of SPL expression also enhanced invadopodia, as revealed by enhanced vinculin spots, and enhanced sodium bicarbonate cotransporter NBC activity without enhancing membranous expression of NBCn1. Disruption of the tubular structure with nocodazole treatment revealed enhanced SPL expression and reduced NBC activity and A549 migration. SPL-mediated junctional modulation and tubular stability affected bicarbonate transporter activity in A549 cells. The junctional modulatory function of SPL in start-up migration, such as remodeling of tight junctions, enhanced invadopodia, and increased NBC activity, revealed here would support fundamental research and the development of an initial target against lung cancer cell migration.


2021 ◽  
Author(s):  
Hanxiao Shi ◽  
Atsuko Niimi ◽  
Toshiyuki Takeuchi ◽  
Kazuya Shiogama ◽  
Yasuyoshi Mizutani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document