Microstructure and wear resistance of in situ synthesized particle-reinforced novel stainless steel by laser melting deposition

2019 ◽  
Vol 6 (8) ◽  
pp. 086561 ◽  
Author(s):  
C Wang ◽  
C H Zhang ◽  
S Zhang ◽  
C L Wu ◽  
J B Zhang ◽  
...  
Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1121 ◽  
Author(s):  
Li ◽  
Liang ◽  
Tian ◽  
Yang ◽  
Xie ◽  
...  

Titanium composite strengthened by Ti3Al precipitations is considered to be one of the excellent materials that is widely used in engineering. In this work, we prepared a kind of Ti-Ti3Al metallic composite by in-situ synthesis technology during the SLM (selective laser melting) process, and analyzed its microstructure, wear resistance, microhardness, and compression properties. The results showed that the Ti-Ti3Al composite, prepared by in-situ synthesis technology based on SLM, had more homogeneous Ti3Al-enhanced phase dispersion strengthening structure. The grain size of the workpiece was about 1 μm, and that of the Ti3Al particle was about 200 nm. Granular Ti3Al was precipitated after the aluminum-containing workpiece formed, with a relatively uniform distribution. Regarding the mechanical properties, the hardness (539 HV) and the wear resistance were significantly improved when compared with the Cp-Ti workpiece. The compressive strength of the workpiece increased from 886.32 MPa to 1568 MPa, and the tensile strength of the workpiece increased from 531 MPa to 567 MPa after adding aluminum. In the future, the combination of in-situ synthesis technology and SLM technology can be used to flexibly adjust the properties of Ti-based materials.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1123
Author(s):  
Frederic van gen Hassend ◽  
Sebastian Weber

The properties of a cobalt-free cast superaustenitic stainless steel (SASS) is investigated comparatively to the commercial high-cobalt alloyed GX15CrNiCo21-20-20 (1.4957, N-155) steel regarding its global hardness and wear resistance at elevated temperature by means of in situ hot hardness tests and cyclic abrasive sliding wear tests against an Al2O3 (corundum) counter-body at 600 °C. In the aged condition, results show that the 1.4957 steel suffers a higher material loss due to brittle failure initiated by coarse eutectic Cr-rich carbides which are incorporated into a mechanically mixed layer during abrasive loading. In contrast, within the Co-free steel eutectic M6(C,N) carbonitrides are distributed more homogeneously showing less tendency to form network structures. Due to the combination of primary Nb-rich globular-blocky MX-type carbonitrides and eutectic M6(C,N) carbonitrides dispersed within an Laves phase strengthened austenitic matrix, this steel provides comparable hardness and significantly improved wear resistance at elevated temperature. Thus, it may be an adequate alternative material to commercial SASS and offers the possibility to save cobalt for future applications.


Vacuum ◽  
2017 ◽  
Vol 141 ◽  
pp. 181-187 ◽  
Author(s):  
C.H. Zhang ◽  
H. Zhang ◽  
C.L. Wu ◽  
S. Zhang ◽  
Z.L. Sun ◽  
...  

2013 ◽  
Vol 22 (2) ◽  
pp. 096369351302200
Author(s):  
Li Peng

This work is based on the dry sliding wear of Stellite 4-FeSi-B4C composites deposited on a TA10 titanium alloy using a Laser melting deposition (LMD) technique, the parameters of which are such as to provide almost crack-free composites with very low porosity. To our knowledge, it is the first time that Stellite4-FeSi-B4C mixed powders are deposited as the hard composites by the LMD technique. Scanning electron microscope results indicate the nanoscale particles and nanorods are produced in such composites. Furthermore, due to the characteristics of the laser technology, the ultrafine nanoscale polycrystalline phases can be easily produced. Compared with a TA10 alloy substrate, the improvements of the micro-hardness and wear resistance are obtained for such composites.


Sign in / Sign up

Export Citation Format

Share Document