Investigation of machining parameters that affects surface roughness and cutting forces in milling of CFRPs with TiAlN and TiN coated carbide cutting tools

2019 ◽  
Vol 6 (9) ◽  
pp. 095616 ◽  
Author(s):  
Dervis Ozkan ◽  
Peter Panjan ◽  
Mustafa Sabri Gok ◽  
Abdullah Cahit Karaoglanli
Sensor Review ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Fuat Kara ◽  
Burak Öztürk

Purpose This paper aims to examine the performance of the machining parameters used in the hard-turning process of DIN 1.2738 mold steel and identify the optimum machining conditions. Design/methodology/approach Experiments were carried out via the Taguchi L18 orthogonal array. The evaluation of the experimental results was based on the signal/noise ratio. The effect levels of the control factors on the surface roughness and flank wear were specified with analysis of variance performed. Two different multiple regression analyses (linear and quadratic) were conducted for the experimental results. A higher correlation coefficient (R2) was obtained with the quadratic regression model, which showed values of 0.97 and 0.95 for Ra and Vb, respectively. Findings The experimental results indicated that generally better results were obtained with the TiAlN-coated tools, in respect to both surface roughness and flank wear. The Taguchi analysis found the optimum results for surface roughness to be with the cutting tools of coated carbide using physical vapor deposition (PVD), a cutting speed of 160 m/min and a feed rate of 0.1 mm/rev, and for flank wear, with cutting tools of coated carbide using PVD, a cutting speed of 80 m/min and a feed rate of 0.1 mm/rev. The results of calculations and confirmation tests for Ra were 0.595 and 0.570 µm, respectively, and for the Vb, 0.0244 and 0.0256 mm, respectively. Developed quadratic regression models demonstrated a very good relationship. Originality/value Optimal parameters for both Ra and Vb were obtained with the TiAlN-coated tool using PVD. Finally, confirmation tests were performed and showed that the optimization had been successfully implemented.


Author(s):  
Ahmadreza Hosseini Tazehkandi ◽  
Mohammadreza Shabgard ◽  
Farid Pilehvarian ◽  
Nakisa Farshfroush

Nickel-based Inconel X-750 superalloy is widely applied in aerospace industry and manufacturing of gas turbine blades, power generators and heat exchangers due to its exclusive properties. As a consequence of low heat transfer coefficient and work-hardening properties, this alloy is known as a poorly machinable alloy. In this work, effect of machining parameters (cutting speed, feed rate and depth of cut) on cutting forces and surface roughness was investigated during turning of Inconel alloy X-750 with coated carbide tool. In order to meet the demands of the environment-friendly cutting processes and human health, biodegradable vegetable oil (BioCut 4600) was selected as the cutting fluid. The results were analyzed using response surface methodology and statistical analysis of variance, and mathematical models for cutting forces and surface roughness were proposed. Results indicated that feed rate and cutting speed were the most effective parameters on the surface roughness. However, depth of cut was the most effective parameter on cutting forces in comparison with cutting speed and feed rate. Eventually, in order to achieve the main aims of industrial production in large amounts and green manufacturing, the ranges for the best cutting conditions were presented.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


2009 ◽  
Vol 83-86 ◽  
pp. 704-710 ◽  
Author(s):  
H. Shahali ◽  
Hamid Zarepour ◽  
Esmaeil Soltani

In this paper, the effect of machining parameters including cutting velocity, feed rate, and tool material on machining power of EN-AC 48000 aluminium alloy has been studied. A L27 Taguchi's standard orthogonal array has been applied as experimental design to investigate the effect of the factors and their interaction. Twenty seven machining tests have been accomplished with two random repetitions, resulting in fifty four experiments. EN-AC 48000 is an important alloy in automotive and aerospace industries. Machining of this alloy is of vital importance due to build-up edge and tool wear. Machining power is an essential parameter affecting the tool life, dimensional accuracy, and cutting efficiency. Three types of cutting tools including coated carbide (CD 1810), uncoated carbide (H10), and polycrystalline diamond (CD10) have been used in this study. Statistical analysis has been employed to study the effect of factors and their interactions using ANOVA analysis. Moreover, optimal factor levels have been presented using signal to noise ratio (S/N) analysis. Also, regression model have been provided to predict the machining power. Finally, the results of confirmation tests have been presented to verify and compare the adequacy of the predictive models.


Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


Author(s):  
Chithajalu Kiran Sagar ◽  
Amrita Priyadarshini ◽  
Amit Kumar Gupta

Abstract Tungsten heavy alloys (WHAs) are ideally suited to a wide range of density applications such as counterweights, inertial masses, radiation shielding, sporting goods and ordnance products. Manufacturing of these components essentially require machining to achieve desired finish, dimensions and tolerances However, machining of WHAs are extremely challenging because of higher values of elastic stiffness and hardness. Hence, there is a need to find the right combination of cutting parameters to carry out the machining operations efficiently. In the present work, turning tests are conducted on three different grades of WHAs, namely, 90WHA, 95WHA and 97WHA. Taguchi analysis is carried out to find out the most contributing factor as well as optimum cutting parameters that can give higher metal removal rate (MRR), lower surface roughness and lower cutting forces. It is observed that feed rate is the most prominent factor with percentage contribution varying in the range of 46–61%; whereas cutting speed has least effect on cutting forces, especially for 95WHA and 97WHA. Optimum values of forces, surface roughness and MRR and the corresponding machining parameters to be taken are presented. It is observed that 95W WHA has slightly better machinability as compared to other two grades since it gives highest MRR with lowest cutting forces and surface roughness values. The optimum machining parameter settings, so predicted, can be utilized to machine WHAs efficiently for manufacture of counter weights and inertial masses used in aerospace applications.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1259
Author(s):  
Emre Altas ◽  
Hasan Gokkaya ◽  
Meltem Altin Karatas ◽  
Dervis Ozkan

The aim of this study was to optimize machining parameters to obtain the smallest average surface roughness (Ra) and flank wear (Vb) values as a result of the surface milling of a nickel-titanium (NiTi) shape memory alloy (SMA) with uncoated cutting tools with different nose radius (rε) under dry cutting conditions. Tungsten carbide cutting tools with different rε (0.4 mm and 0.8 mm) were used in milling operations. The milling process was performed as lateral/surface cutting at three different cutting speeds (Vc) (20, 35 and 50 m/min), feed rates (fz) (0.03, 0.07 and 0.14 mm/tooth) and a constant axial cutting depth (0.7 mm). The effects of machining parameters in milling experiments were investigated based on the Taguchi L18 (21 × 32) orthogonal sequence, and the data obtained were analyzed using the Minitab 17 software. To determine the effects of processing parameters on Ra and Vb, analysis of variance (ANOVA) was used. The analysis results reveal that the dominant factor affecting the Ra is the cutting tool rε, while the main factor affecting Vb is the fz. Since the predicted values and measured values are very close to each other, it can be said that optimization is correct according to the validation test results.


2010 ◽  
Vol 447-448 ◽  
pp. 816-820 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Hiroyuki Sasahara

Surface integrity is particularly important for the aerospace industry components in order to permit longer service life and maximized its reliability. This present work compares the performance of palm oil and synthetic ester on surface roughness, surface defect, microhardness and subsurface deformation when high speed drilling of Ti-6Al-4V under MQL condition. The drilling tests were conducted with AlTiN coated carbide tool. The surface roughness decreased with increasing in cutting speed and thicker subsurface deformation was formed underneath the machined surface. Grooves, cavities, pit holes, microcracks and material smearing were the dominant surface damages thus deteriorated the machined surface. For both lubricants, the machined surface experienced from thermal softening and work hardening effect thus gave a variation in microhardness values. The results indicated the substantial benefit of MQL by palm oil on surface integrity.


Sign in / Sign up

Export Citation Format

Share Document